Revealing the Covariation of Atmospheric O2 and Pollutants in an Industrial Metropolis by Explainable Machine Learning

环境科学 污染物 微粒 大气科学 自然(考古学) 市中心 环境化学 生态学 地理 化学 地质学 考古 生物
作者
Xiaoyue Liu,Li Wang,Jianping Huang,Yongqi Wang,Changyu Li,Lei Ding,Xinbo Lian,Jinsen Shi
出处
期刊:Environmental Science and Technology Letters [American Chemical Society]
卷期号:10 (10): 851-858 被引量:5
标识
DOI:10.1021/acs.estlett.3c00505
摘要

In urban areas, atmospheric O2 actively participates in the process of anthropogenic emissions and energy consumption. However, the covariation between atmospheric O2 and the emitted pollutants has yet to be thoroughly explored. This study examines the covariations between atmospheric O2 and pollutants in Lanzhou, a semi-arid industrial metropolis. A machine learning (ML)-based O2 simulator coupled with a SHapley Additive exPlanation (SHAP) algorithm is established to explore and interpret their covariations under diverse conditions. Our findings indicate an increase of 16.3 ppm in the O2 concentration associated with the atmospheric transport of natural dust particles during dusty weather events. This suggests that natural dust transport can mitigate the depletion of atmospheric O2 caused by primary emissions and secondary formation of anthropogenic particulate matter. Furthermore, we identify a nonlinear relationship between the concentrations of O2 and pollutant concentrations, which likely arises from their distinct diffusive abilities. The study highlights the unique pollution characteristics in a semi-arid urban downtown and demonstrates the ability of ML-based methodology to reproduce and interpret the environmental and anthropogenic impacts on the local carbon–oxygen balance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Hello应助刘家宁采纳,获得10
2秒前
欢喜的靖雁完成签到,获得积分10
2秒前
2秒前
3秒前
博修发布了新的文献求助10
3秒前
搜集达人应助小可采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
lili完成签到,获得积分10
7秒前
Lumengsheng发布了新的文献求助10
8秒前
聪明蛋发布了新的文献求助30
8秒前
9秒前
cucu发布了新的文献求助10
10秒前
10秒前
10秒前
css1997发布了新的文献求助10
10秒前
彤光赫显发布了新的文献求助10
11秒前
机灵雁风完成签到,获得积分10
12秒前
清秀不言完成签到 ,获得积分10
12秒前
醉熏的幻灵完成签到 ,获得积分10
13秒前
leaolf应助烤乳猪采纳,获得10
13秒前
14秒前
15秒前
完美世界应助阳光芷蝶采纳,获得10
16秒前
包容的语薇完成签到,获得积分10
17秒前
爆米花应助侯mm采纳,获得10
18秒前
脑洞疼应助韦尔蓝采纳,获得20
18秒前
斯文败类应助huihui采纳,获得10
19秒前
CCC完成签到 ,获得积分10
19秒前
22秒前
超帅的小熊猫完成签到,获得积分10
23秒前
23秒前
24秒前
25秒前
25秒前
25秒前
Glowworm完成签到,获得积分10
26秒前
黑熊精发布了新的文献求助10
26秒前
田様应助七七采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578224
求助须知:如何正确求助?哪些是违规求助? 3997171
关于积分的说明 12374791
捐赠科研通 3671317
什么是DOI,文献DOI怎么找? 2023340
邀请新用户注册赠送积分活动 1057301
科研通“疑难数据库(出版商)”最低求助积分说明 944261