SpA-Former:An Effective and lightweight Transformer for image shadow removal

计算机科学 编码器 人工智能 计算机视觉 变压器 解码方法 卷积神经网络 残余物 算法 电压 工程类 电气工程 操作系统
作者
Xiaofeng Zhang,Yudi Zhao,Chaochen Gu,Changsheng Lu,Shanying Zhu
标识
DOI:10.1109/ijcnn54540.2023.10191081
摘要

In this paper, we propose an Effective and lightweight Transformer for image shadow detection and removal named SpA-Former to recover a shadow-free image from a single shaded image. In contrast to conventional methods that require two stages for shadow detection and then shadow removal, the SpA-Former is a one-stage network capable of learning the mapping function between shadows and no shadows, and does not require a separate shadow detection. SpA-Former is composed of Transformer encoder and CNN decoder, where the CNN decoder contains the GAN network. In the Transformer encoding stage, Gated Feed-Forward Network(GFFN) is devised to control the information flow. In the CNN decoding stage, Two-wheel RNN joint spatial attention(TWRNN) and Fourier transform residual block (FTR) are designed to achieve satisfactory results in shadow removal. The combination of Transformer and CNN is able to feed global features from the Vision Transformer encoder into CNN to enhance the global perception of CNN branches, taking into account the complementarity of local features and the global. The SpA-Former's inference speed is 0.0459s, and the final Parameters and FLOPS are only 0.47MB and 15G, achieving the current lightweight of image shadow removal. The source code of MemoryNet can be obtained from https://github.com/zhangbaijin/SpA-Former-shadow-removal
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OrangeBlueHeart完成签到,获得积分10
刚刚
逍遥发布了新的文献求助30
1秒前
1秒前
1秒前
科研通AI5应助大胆采纳,获得10
1秒前
huangxiru918发布了新的文献求助15
1秒前
隐形曼青应助大方冬寒采纳,获得10
2秒前
JamesPei应助牛哥采纳,获得10
2秒前
2秒前
3秒前
5秒前
义气萝卜头完成签到 ,获得积分10
5秒前
aaaaa完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
小马甲应助月是故乡明采纳,获得10
6秒前
大方冬寒完成签到,获得积分10
8秒前
dada完成签到,获得积分10
8秒前
9秒前
坚持三年发布了新的文献求助30
9秒前
ssw发布了新的文献求助10
9秒前
莫之白发布了新的文献求助10
10秒前
doctorbba发布了新的文献求助10
10秒前
10秒前
DAKE发布了新的文献求助10
10秒前
Xppcjlan发布了新的文献求助10
11秒前
Vivian发布了新的文献求助10
11秒前
13秒前
科研通AI5应助yyy采纳,获得10
13秒前
14秒前
17秒前
拼搏小丸子完成签到 ,获得积分10
17秒前
19秒前
小熊同学发布了新的文献求助10
19秒前
20秒前
20秒前
ustinian完成签到,获得积分10
21秒前
Lucas应助Math4396采纳,获得10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797740
求助须知:如何正确求助?哪些是违规求助? 3343209
关于积分的说明 10314887
捐赠科研通 3059968
什么是DOI,文献DOI怎么找? 1679185
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150