A survey on few-shot class-incremental learning

计算机科学 人工智能 机器学习 过度拟合 遗忘 深度学习 领域(数学) 透视图(图形) 特征(语言学) 分类 人工神经网络 哲学 语言学 数学 纯数学
作者
Songsong Tian,Lusi Li,Weijun Li,Hang Ran,Xin Ning,Prayag Tiwari
出处
期刊:Neural Networks [Elsevier BV]
卷期号:169: 307-324 被引量:49
标识
DOI:10.1016/j.neunet.2023.10.039
摘要

Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental learning, focusing on introducing FSCIL from two perspectives, while reviewing over 30 theoretical research studies and more than 20 applied research studies. From the theoretical perspective, we provide a novel categorization approach that divides the field into five subcategories, including traditional machine learning methods, meta learning-based methods, feature and feature space-based methods, replay-based methods, and dynamic network structure-based methods. We also evaluate the performance of recent theoretical research on benchmark datasets of FSCIL. From the application perspective, FSCIL has achieved impressive achievements in various fields of computer vision such as image classification, object detection, and image segmentation, as well as in natural language processing and graph. We summarize the important applications. Finally, we point out potential future research directions, including applications, problem setups, and theory development. Overall, this paper offers a comprehensive analysis of the latest advances in FSCIL from a methodological, performance, and application perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苹果曼香完成签到,获得积分10
刚刚
2秒前
3秒前
5秒前
5秒前
火星上的谢彬完成签到,获得积分20
7秒前
蘑菇腿发布了新的文献求助10
7秒前
nenoaowu发布了新的文献求助10
7秒前
兰亭序完成签到,获得积分10
8秒前
哈哈哈完成签到 ,获得积分10
8秒前
9秒前
10秒前
余佘发布了新的文献求助10
11秒前
11秒前
M1有光发布了新的文献求助10
12秒前
13秒前
精明涵瑶发布了新的文献求助10
14秒前
14秒前
14秒前
颗粒完成签到,获得积分10
15秒前
无花果应助苹果曼香采纳,获得10
15秒前
zoushiyi完成签到,获得积分10
16秒前
16秒前
贝贝完成签到,获得积分10
16秒前
17秒前
踏实的求真完成签到,获得积分10
18秒前
18秒前
19秒前
xun发布了新的文献求助10
19秒前
ari发布了新的文献求助10
19秒前
20秒前
xinggui完成签到,获得积分10
21秒前
echoabc完成签到,获得积分10
21秒前
贝壳发布了新的文献求助10
22秒前
jinqiu关注了科研通微信公众号
23秒前
24秒前
24秒前
xinggui发布了新的文献求助10
24秒前
ding应助陈念采纳,获得10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800362
求助须知:如何正确求助?哪些是违规求助? 3345637
关于积分的说明 10326218
捐赠科研通 3062073
什么是DOI,文献DOI怎么找? 1680810
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763560