Ceph-Net: automatic detection of cephalometric landmarks on scanned lateral cephalograms from children and adolescents using an attention-based stacked regression network

头影测量分析 背景(考古学) 地标 口腔正畸科 人工智能 射线照相术 计算机科学 医学 放射科 生物 古生物学
作者
Su Yang,Eun Sun Song,Eun Seung Lee,Se-Ryong Kang,Won-Jin Yi,Seung‐Pyo Lee
出处
期刊:BMC Oral Health [BioMed Central]
卷期号:23 (1) 被引量:5
标识
DOI:10.1186/s12903-023-03452-7
摘要

Abstract Background The success of cephalometric analysis depends on the accurate detection of cephalometric landmarks on scanned lateral cephalograms. However, manual cephalometric analysis is time-consuming and can cause inter- and intra-observer variability. The purpose of this study was to automatically detect cephalometric landmarks on scanned lateral cephalograms with low contrast and resolution using an attention-based stacked regression network (Ceph-Net). Methods The main body of Ceph-Net compromised stacked fully convolutional networks (FCN) which progressively refined the detection of cephalometric landmarks on each FCN. By embedding dual attention and multi-path convolution modules in Ceph-Net, the network learned local and global context and semantic relationships between cephalometric landmarks. Additionally, the intermediate deep supervision in each FCN further boosted the training stability and the detection performance of cephalometric landmarks. Results Ceph-Net showed a superior detection performance in mean radial error and successful detection rate, including accuracy improvements in cephalometric landmark detection located in low-contrast soft tissues compared with other detection networks. Moreover, Ceph-Net presented superior detection performance on the test dataset split by age from 8 to 16 years old. Conclusions Ceph-Net demonstrated an automatic and superior detection of cephalometric landmarks by successfully learning local and global context and semantic relationships between cephalometric landmarks in scanned lateral cephalograms with low contrast and resolutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小芦铃发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
魔幻若山发布了新的文献求助30
1秒前
3秒前
风吹草动玉米粒完成签到,获得积分10
3秒前
充电宝应助落落采纳,获得10
3秒前
Alerina完成签到,获得积分10
3秒前
bofu发布了新的文献求助10
3秒前
彭于彦祖应助清脆松采纳,获得20
4秒前
4秒前
5秒前
zhaozi发布了新的文献求助10
5秒前
6秒前
桢桢树发布了新的文献求助10
6秒前
7秒前
inb完成签到,获得积分20
8秒前
静雯完成签到,获得积分10
8秒前
大气亦巧完成签到,获得积分10
9秒前
bofu发布了新的文献求助10
9秒前
Kyrie完成签到,获得积分10
9秒前
齐嘉懿完成签到,获得积分10
10秒前
10秒前
10秒前
羊羊发布了新的文献求助10
10秒前
落寞臻完成签到,获得积分10
11秒前
今昔发布了新的文献求助10
11秒前
inb发布了新的文献求助30
11秒前
12秒前
12秒前
Lucas应助健壮的绿凝采纳,获得10
13秒前
13秒前
14秒前
木の子完成签到,获得积分10
14秒前
Qyyy发布了新的文献求助10
15秒前
酷波er应助shirely采纳,获得10
15秒前
zho发布了新的文献求助30
15秒前
bofu发布了新的文献求助10
15秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334574
关于积分的说明 10270902
捐赠科研通 3051026
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802553
科研通“疑难数据库(出版商)”最低求助积分说明 760777