Greylag Goose Optimization: Nature-inspired optimization algorithm

算法 计算机科学 群体行为 进化算法 水准点(测量) 秩(图论) 人工智能 数学优化 数学 大地测量学 生物 组合数学 古生物学 地理
作者
El-Sayed M. El-kenawy,Nima Khodadadi,Seyedali Mirjalili,Abdelaziz A. Abdelhamid,Marwa M. Eid,Abdelhameed Ibrahim‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122147-122147 被引量:146
标识
DOI:10.1016/j.eswa.2023.122147
摘要

Nature-inspired metaheuristic approaches draw their core idea from biological evolution in order to create new and powerful competing algorithms. Such algorithms can be divided into evolution-based and swarm-based algorithms. This paper proposed a new nature-inspired optimizer called the Greylag Goose Optimization (GGO) algorithm. The proposed algorithm (GGO) belongs to the class of swarm-based algorithms and is inspired by the Greylag Goose. Geese are excellent flyers and during their seasonal migrations, they fly in a group and can cover thousands of kilometers in a single flight. While flying, a group of geese forms themselves as a "V" configuration. In this way, the geese in the front can minimize the air resistance of the ones in the back. This allows the geese to fly around 70% farther as a group than they could individually. The GGO algorithm is first validated by being applied to nineteen datasets retrieved from the UCI Machine Learning Repository. Each dataset contains a varied amount of characteristics, instances, and classes that are used to choose features. After that, it is put to use in the process of solving a number of engineering benchmark functions and case studies. Several case studies are solved using the proposed algorithm too, including the pressure vessel design and the tension/compression spring design. The findings demonstrate that the GGO method outperforms numerous other comparative optimization algorithms and delivers superior accuracy compared to other algorithms. The results of the statistical analysis tests, such as Wilcoxon's rank-sum and one-way analysis of variance (ANOVA), demonstrate that the GGO algorithm achieves superior results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潘fujun完成签到 ,获得积分10
8秒前
Wang发布了新的文献求助10
10秒前
HCKACECE完成签到 ,获得积分0
10秒前
赧赧完成签到 ,获得积分10
17秒前
goodsheep完成签到 ,获得积分10
21秒前
哈哈哈完成签到 ,获得积分10
23秒前
你会飞么发布了新的文献求助10
25秒前
落红禹03完成签到 ,获得积分10
26秒前
35秒前
liang19640908完成签到 ,获得积分10
35秒前
你会飞么完成签到,获得积分10
35秒前
淡然的咖啡豆完成签到 ,获得积分10
41秒前
123完成签到 ,获得积分10
42秒前
Ingrid_26完成签到,获得积分10
48秒前
xiaoliuyaonuli完成签到,获得积分10
48秒前
西红柿不吃皮完成签到 ,获得积分10
54秒前
鲲之小完成签到 ,获得积分10
55秒前
Zheng完成签到 ,获得积分10
58秒前
甜蜜代双完成签到 ,获得积分10
1分钟前
文静的惜雪完成签到 ,获得积分10
1分钟前
chen完成签到 ,获得积分10
1分钟前
swordshine完成签到,获得积分10
1分钟前
sjyu1985完成签到 ,获得积分10
1分钟前
xue112完成签到 ,获得积分10
1分钟前
大雄的梦想是什么完成签到 ,获得积分10
1分钟前
CipherSage应助hhh2018687采纳,获得30
1分钟前
hxpxp完成签到,获得积分10
1分钟前
yilin完成签到 ,获得积分10
1分钟前
海猫食堂完成签到,获得积分10
1分钟前
Raymond完成签到,获得积分10
1分钟前
Jackson333完成签到,获得积分10
1分钟前
xiaobin完成签到,获得积分10
1分钟前
1分钟前
胡楠完成签到,获得积分10
1分钟前
1分钟前
hhh2018687发布了新的文献求助30
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402437
捐赠科研通 3077226
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743