Greylag Goose Optimization: Nature-inspired optimization algorithm

算法 计算机科学 群体行为 进化算法 水准点(测量) 秩(图论) 人工智能 数学优化 数学 古生物学 大地测量学 组合数学 生物 地理
作者
El‐Sayed M. El‐kenawy,Nima Khodadadi,Seyedali Mirjalili,Abdelaziz A. Abdelhamid,Marwa M. Eid,Abdelhameed Ibrahim‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122147-122147 被引量:447
标识
DOI:10.1016/j.eswa.2023.122147
摘要

Nature-inspired metaheuristic approaches draw their core idea from biological evolution in order to create new and powerful competing algorithms. Such algorithms can be divided into evolution-based and swarm-based algorithms. This paper proposed a new nature-inspired optimizer called the Greylag Goose Optimization (GGO) algorithm. The proposed algorithm (GGO) belongs to the class of swarm-based algorithms and is inspired by the Greylag Goose. Geese are excellent flyers and during their seasonal migrations, they fly in a group and can cover thousands of kilometers in a single flight. While flying, a group of geese forms themselves as a "V" configuration. In this way, the geese in the front can minimize the air resistance of the ones in the back. This allows the geese to fly around 70% farther as a group than they could individually. The GGO algorithm is first validated by being applied to nineteen datasets retrieved from the UCI Machine Learning Repository. Each dataset contains a varied amount of characteristics, instances, and classes that are used to choose features. After that, it is put to use in the process of solving a number of engineering benchmark functions and case studies. Several case studies are solved using the proposed algorithm too, including the pressure vessel design and the tension/compression spring design. The findings demonstrate that the GGO method outperforms numerous other comparative optimization algorithms and delivers superior accuracy compared to other algorithms. The results of the statistical analysis tests, such as Wilcoxon's rank-sum and one-way analysis of variance (ANOVA), demonstrate that the GGO algorithm achieves superior results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渤大小mn发布了新的文献求助10
刚刚
科研通AI6应助阔达的沛儿采纳,获得10
1秒前
浮游应助冷静尔容采纳,获得10
2秒前
survivor1320发布了新的文献求助10
2秒前
aaa完成签到,获得积分10
2秒前
浮游应助闫雪艳采纳,获得10
3秒前
llt完成签到,获得积分10
5秒前
ting发布了新的文献求助10
5秒前
浮游应助行走的sci采纳,获得10
5秒前
英俊的铭应助ysxl采纳,获得10
9秒前
Kyone完成签到,获得积分10
9秒前
善良的樱完成签到 ,获得积分10
9秒前
9秒前
未闻子规啼完成签到,获得积分10
9秒前
自由的渗透奈鱼完成签到,获得积分10
10秒前
Johnny发布了新的文献求助10
10秒前
小鸭子完成签到,获得积分10
10秒前
冷静尔容完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
大模型应助猪猪hero采纳,获得10
13秒前
survivor1320完成签到,获得积分10
13秒前
追寻树叶发布了新的文献求助10
13秒前
王佳慧完成签到 ,获得积分10
14秒前
充电宝应助韩晚渔采纳,获得150
14秒前
风趣夜山发布了新的文献求助10
15秒前
英姑应助马茹采纳,获得10
16秒前
ann7完成签到,获得积分10
17秒前
一颗杨梅发布了新的文献求助10
17秒前
万物安生发布了新的文献求助10
17秒前
Johnny完成签到,获得积分10
18秒前
科研通AI6应助Xu采纳,获得10
20秒前
phoebe完成签到,获得积分10
20秒前
汉堡包应助smoothgoing采纳,获得10
20秒前
意忆完成签到 ,获得积分10
20秒前
20秒前
21秒前
21秒前
CyndiaSUN完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480500
求助须知:如何正确求助?哪些是违规求助? 4581730
关于积分的说明 14381804
捐赠科研通 4510333
什么是DOI,文献DOI怎么找? 2471734
邀请新用户注册赠送积分活动 1458148
关于科研通互助平台的介绍 1431848