Non-Invasive mHealth Application for Detecting Anemia from Conjunctiva Images

人工智能 贫血 计算机科学 结膜 分割 随机森林 图像分割 计算机视觉 基本事实 机器学习 医学 病理 内科学
作者
Mohammad Marufur Rahman,Omar Faruk Tasnim,Salim Ullah,Md. Johurul Alam,Shah Md. Safi Sadman
标识
DOI:10.1109/ismsit58785.2023.10304979
摘要

Anemia, which is defined by a lack of red blood cells or hemoglobin, is a widespread issue in global health that has far-reaching effects. An accurate and timely diagnosis of Anemia is essential, especially for pregnant women and people with chronic medical conditions as it can result in weakness, exhaustion, deteriorated cognitive function, and other severe problems. Traditional techniques of detecting Anemia often involve invasive blood testing, which can be expensive and inconvenient. This study proposes a non-invasive mHealth application that uses a machine learning and deep learning algorithms to identify Anemia from conjunctiva images. An annotated dataset containing eye conjunctiva images and ground truth masks were prepared for this study. The proposed system uses smartphone to capture image of a person's face with exposed conjunctiva and this image is segmented and region of interest that is eye conjunctiva is separated from the background. Then this segmented region is classified into Anemic and Non-anemic class by a machine learning algorithm. In this study UNet architecture gave 72.05% IOU in segmentation task and Random Forest classifier showed 91.43%±1.06% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joe55667788完成签到,获得积分20
1秒前
1秒前
1秒前
ljs发布了新的文献求助10
2秒前
李燕君发布了新的文献求助10
3秒前
酷波er应助DF采纳,获得10
4秒前
4秒前
5秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
陈雷应助风趣的芙蓉采纳,获得50
9秒前
nukuyy发布了新的文献求助20
9秒前
坦率的怡完成签到,获得积分10
9秒前
10秒前
Fan完成签到,获得积分10
11秒前
Klay完成签到,获得积分10
11秒前
姜鹏发布了新的文献求助10
11秒前
ellie0125发布了新的文献求助10
12秒前
13秒前
13秒前
alan完成签到,获得积分20
14秒前
prisoner完成签到,获得积分10
15秒前
Jasper应助12采纳,获得10
16秒前
852应助安静的凡松采纳,获得10
17秒前
童童发布了新的文献求助10
17秒前
alan发布了新的文献求助10
18秒前
19秒前
聪明的惜芹完成签到,获得积分10
20秒前
球球发布了新的文献求助10
21秒前
深情安青应助敏感的怜翠采纳,获得10
21秒前
闪闪寒云完成签到 ,获得积分10
22秒前
23秒前
WZ发布了新的文献求助10
24秒前
FashionBoy应助猪猪hero采纳,获得10
26秒前
深情安青应助alan采纳,获得10
26秒前
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795026
求助须知:如何正确求助?哪些是违规求助? 3339955
关于积分的说明 10298247
捐赠科研通 3056550
什么是DOI,文献DOI怎么找? 1677052
邀请新用户注册赠送积分活动 805118
科研通“疑难数据库(出版商)”最低求助积分说明 762333