Adaptive Federated Learning With Negative Inner Product Aggregation

计算机科学 产品(数学) 分布式计算 几何学 数学
作者
Wu Deng,Xintao Chen,Xinyan Li,Huimin Zhao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 6570-6581 被引量:28
标识
DOI:10.1109/jiot.2023.3312059
摘要

Federated learning (FL) represents a distributed machine learning approach that leverages a centralized server to train models while keeping the data on edge devices isolated. FL has the benefits of preserving data privacy and improving model accuracy. However, the occurrence of unexpected device exits during model training can severely impact the performance of the models. To address the communication overhead issue and accelerate model convergence, a novel adaptive FL with a negative inner product aggregation approach, namely, NIPAFed is proposed in this article. The NIPAFed leverages a congestion control algorithm inspired by TCP, known as additive multiplication subtraction strategy, to adaptively predict the workload of devices based on historical workload. So NIPAFed effectively mitigates the impact of stragglers on the training process. Additionally, to reduce communication overhead and latency, a negative inner product aggregation strategy is employed to accelerate model convergence and minimize the number of communication rounds required. The convergence of the model is also analyzed theoretically. The validity of NIPAFed is tested on federated public data sets and the NIPAFed is compared with some algorithms. The experimental results clearly demonstrate the superiority of the NIPAFed in terms of performance. By reducing device dropouts and minimizing the communication rounds, the NIPAFed effectively controls the communication overhead while the convergence is ensured.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助叮叮车采纳,获得10
刚刚
颖火虫2588完成签到,获得积分10
刚刚
hyx发布了新的文献求助10
1秒前
1秒前
rh1006发布了新的文献求助10
1秒前
2秒前
2秒前
酷波er应助佳期采纳,获得10
2秒前
田様应助cenghao采纳,获得10
3秒前
3秒前
Liyipu发布了新的文献求助10
4秒前
HF发布了新的文献求助10
4秒前
量子猫完成签到,获得积分10
5秒前
6秒前
cu2s发布了新的文献求助10
6秒前
科研通AI6.1应助hyw010724采纳,获得10
6秒前
迦佭发布了新的文献求助10
6秒前
ju00发布了新的文献求助10
6秒前
琰sky完成签到,获得积分10
6秒前
Lrangrang完成签到,获得积分10
6秒前
7秒前
科研通AI6.1应助可可采纳,获得10
8秒前
8秒前
gogo完成签到,获得积分10
8秒前
zzz完成签到 ,获得积分10
9秒前
9秒前
Roevard完成签到,获得积分10
10秒前
滚滚发布了新的文献求助10
10秒前
10秒前
耍酷的小蝴蝶关注了科研通微信公众号
10秒前
11秒前
11秒前
McUltrman完成签到,获得积分10
11秒前
新宇星辰发布了新的文献求助10
12秒前
杨琳发布了新的文献求助10
12秒前
xi完成签到,获得积分10
12秒前
康佳发布了新的文献求助10
13秒前
曾经友容发布了新的文献求助10
13秒前
流水完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758956
求助须知:如何正确求助?哪些是违规求助? 5518438
关于积分的说明 15392719
捐赠科研通 4896143
什么是DOI,文献DOI怎么找? 2633584
邀请新用户注册赠送积分活动 1581565
关于科研通互助平台的介绍 1537189