Cross-scale contrastive triplet networks for graph representation learning

计算机科学 最大熵 图形 特征学习 人工智能 理论计算机科学 节点(物理) 自然语言处理 计算机网络 频道(广播) 结构工程 盲信号分离 工程类
作者
Yanbei Liu,Wanjin Shan,Xiao Wang,Zhitao Xiao,Lei Geng,Fang Zhang,Dongdong Du,Yanwei Pang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:145: 109907-109907 被引量:10
标识
DOI:10.1016/j.patcog.2023.109907
摘要

Graph representation learning aims to learn low-dimensional representation for the graph, which has played a vital role in real-world applications. Without requiring additional labeled data, contrastive learning based graph representation learning (or graph contrastive learning) has attracted considerable attention. Recently, one of the most exciting advancement in graph contrastive learning is Deep Graph Infomax (DGI), which maximizes the Mutual Information (MI) between the node and graph representations. However, DGI only considers the contextual node information, ignoring the intrinsic node information (i.e., the similarity between node representations in different views). In this paper, we propose a novel Cross-scale Contrastive Triplet Networks (CCTN) framework, which captures both contextual and intrinsic node information for graph representation learning. Specifically, to obtain the contextual node information, we utilize an infomax contrastive network to maximize the MI between node and graph representations. For acquiring the intrinsic node information, we present a Siamese contrastive network by maximizing the similarity between node representations in different augmented views. Two contrastive networks learn together through a shared graph convolution network to form our cross-scale contrastive triplet networks. Finally, we evaluate CCTN on six real-world datasets. Extensive experimental results demonstrate that CCTN achieves state-of-the-art performance on node classification and clustering tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2224536发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
make217完成签到 ,获得积分10
2秒前
quququ发布了新的文献求助10
3秒前
3秒前
3秒前
畅快芝麻完成签到,获得积分10
3秒前
爱睡觉发布了新的文献求助10
4秒前
鲁卓林发布了新的文献求助10
4秒前
xix关注了科研通微信公众号
4秒前
5秒前
changping应助科研通管家采纳,获得10
5秒前
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得30
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
FeiL应助科研通管家采纳,获得10
7秒前
wxyshare应助科研通管家采纳,获得10
7秒前
哈基米德给CucRuotThua的求助进行了留言
7秒前
wanci应助科研通管家采纳,获得10
7秒前
7秒前
carmen_geng应助科研通管家采纳,获得10
7秒前
Brunfelsia完成签到,获得积分10
7秒前
一白完成签到,获得积分10
7秒前
7秒前
无花果应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051061
求助须知:如何正确求助?哪些是违规求助? 4278621
关于积分的说明 13337056
捐赠科研通 4093748
什么是DOI,文献DOI怎么找? 2240502
邀请新用户注册赠送积分活动 1247091
关于科研通互助平台的介绍 1176104