Cross-scale contrastive triplet networks for graph representation learning

计算机科学 最大熵 图形 特征学习 人工智能 理论计算机科学 节点(物理) 自然语言处理 计算机网络 结构工程 盲信号分离 频道(广播) 工程类
作者
Yanbei Liu,Wanjin Shan,Xiao Wang,Zhitao Xiao,Lei Geng,Fang Zhang,Dongdong Du,Yanwei Pang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:145: 109907-109907 被引量:5
标识
DOI:10.1016/j.patcog.2023.109907
摘要

Graph representation learning aims to learn low-dimensional representation for the graph, which has played a vital role in real-world applications. Without requiring additional labeled data, contrastive learning based graph representation learning (or graph contrastive learning) has attracted considerable attention. Recently, one of the most exciting advancement in graph contrastive learning is Deep Graph Infomax (DGI), which maximizes the Mutual Information (MI) between the node and graph representations. However, DGI only considers the contextual node information, ignoring the intrinsic node information (i.e., the similarity between node representations in different views). In this paper, we propose a novel Cross-scale Contrastive Triplet Networks (CCTN) framework, which captures both contextual and intrinsic node information for graph representation learning. Specifically, to obtain the contextual node information, we utilize an infomax contrastive network to maximize the MI between node and graph representations. For acquiring the intrinsic node information, we present a Siamese contrastive network by maximizing the similarity between node representations in different augmented views. Two contrastive networks learn together through a shared graph convolution network to form our cross-scale contrastive triplet networks. Finally, we evaluate CCTN on six real-world datasets. Extensive experimental results demonstrate that CCTN achieves state-of-the-art performance on node classification and clustering tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助xh采纳,获得10
1秒前
1秒前
aabbccwy完成签到,获得积分10
1秒前
unfeeling8完成签到 ,获得积分10
1秒前
阿橘完成签到,获得积分10
1秒前
猫里小七完成签到,获得积分10
2秒前
乐乐应助梅仑西西采纳,获得10
3秒前
3秒前
3秒前
4秒前
狄谷南完成签到,获得积分10
4秒前
无花果应助可乐采纳,获得20
5秒前
5秒前
抹茶麻薯发布了新的文献求助10
6秒前
6秒前
非烟完成签到,获得积分20
6秒前
enh发布了新的文献求助30
7秒前
7秒前
8秒前
8秒前
充电宝应助1111采纳,获得10
8秒前
kiska发布了新的文献求助20
8秒前
CNAxiaozhu7举报long求助涉嫌违规
8秒前
黄腾应助云汐儿采纳,获得10
9秒前
9秒前
zzz发布了新的文献求助10
10秒前
脑洞疼应助小明采纳,获得10
10秒前
xiaoshuwang完成签到,获得积分10
10秒前
10秒前
和谐续完成签到 ,获得积分10
10秒前
11秒前
zl12345发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
天麻zyq发布了新的文献求助10
13秒前
13秒前
13秒前
aniu发布了新的文献求助10
13秒前
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808831
求助须知:如何正确求助?哪些是违规求助? 3353506
关于积分的说明 10365583
捐赠科研通 3069749
什么是DOI,文献DOI怎么找? 1685746
邀请新用户注册赠送积分活动 810704
科研通“疑难数据库(出版商)”最低求助积分说明 766300