Interpretable Machine Learning for Discovery: Statistical Challenges and Opportunities

机器学习 人工智能 计算机科学 一致性(知识库) 数据科学 大数据 推论 领域(数学) 过程(计算) 统计推断 无监督学习 透视图(图形) 数据挖掘 数学 统计 纯数学 操作系统
作者
Genevera I. Allen,Luqin Gan,Lili Zheng
出处
期刊:Annual review of statistics and its application [Annual Reviews]
卷期号:11 (1) 被引量:1
标识
DOI:10.1146/annurev-statistics-040120-030919
摘要

New technologies have led to vast troves of large and complex data sets across many scientific domains and industries. People routinely use machine learning techniques not only to process, visualize, and make predictions from these big data, but also to make data-driven discoveries. These discoveries are often made using interpretable machine learning, or machine learning models and techniques that yield human-understandable insights. In this article, we discuss and review the field of interpretable machine learning, focusing especially on the techniques, as they are often employed to generate new knowledge or make discoveries from large data sets. We outline the types of discoveries that can be made using interpretable machine learning in both supervised and unsupervised settings. Additionally, we focus on the grand challenge of how to validate these discoveries in a data-driven manner, which promotes trust in machine learning systems and reproducibility in science. We discuss validation both from a practical perspective, reviewing approaches based on data-splitting and stability, as well as from a theoretical perspective, reviewing statistical results on model selection consistency and uncertainty quantification via statistical inference. Finally, we conclude by highlighting open challenges in using interpretable machine learning techniques to make discoveries, including gaps between theory and practice for validating data-driven discoveries. Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 11 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhh发布了新的文献求助10
1秒前
1秒前
1秒前
乐乐应助超级盼海采纳,获得10
1秒前
打打应助布丁采纳,获得10
2秒前
天天快乐应助felix采纳,获得10
2秒前
开心蛋挞发布了新的文献求助10
2秒前
ahyiziping发布了新的文献求助10
2秒前
孔孔发布了新的文献求助30
3秒前
wyg1994发布了新的文献求助10
3秒前
banyingmm完成签到,获得积分10
3秒前
3秒前
隐形曼青应助小圆采纳,获得10
4秒前
lc完成签到,获得积分20
4秒前
文艺书雪发布了新的文献求助10
4秒前
壮观果汁完成签到 ,获得积分10
4秒前
nhsyb嘉发布了新的文献求助10
4秒前
poorzz发布了新的文献求助10
5秒前
6秒前
大意的剑心完成签到,获得积分10
7秒前
JACk完成签到 ,获得积分10
7秒前
8秒前
孟123完成签到,获得积分10
9秒前
开朗的夜阑完成签到,获得积分10
10秒前
11秒前
传奇3应助田小姐采纳,获得10
11秒前
yszm发布了新的文献求助10
11秒前
孔孔完成签到,获得积分10
11秒前
英俊水池完成签到,获得积分10
12秒前
TARGET完成签到 ,获得积分10
13秒前
西陆完成签到,获得积分10
13秒前
14秒前
14秒前
充电宝应助不问归期的风采纳,获得20
14秒前
14秒前
安AN完成签到,获得积分10
14秒前
田様应助zhh采纳,获得10
14秒前
15秒前
15秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838043
求助须知:如何正确求助?哪些是违规求助? 3380287
关于积分的说明 10513442
捐赠科研通 3099903
什么是DOI,文献DOI怎么找? 1707264
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772750