Partial Multiview Representation Learning With Cross-View Generation

计算机科学 一致性(知识库) 代表(政治) 互补性(分子生物学) 机器学习 人工智能 推论 聚类分析 外部数据表示 特征学习 趋同(经济学) 数据挖掘 算法 政治 生物 政治学 法学 经济 遗传学 经济增长
作者
Wenbo Dong,Shiliang Sun
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2023.3300977
摘要

Multiview learning has made significant progress in recent years. However, an implicit assumption is that multiview data are complete, which is often contrary to practical applications. Due to human or data acquisition equipment errors, what we actually get is partial multiview data, which existing multiview algorithms are limited to processing. Modeling complex dependencies between views in terms of consistency and complementarity remains challenging, especially in partial multiview data scenarios. To address the above issues, this article proposes a deep Gaussian cross-view generation model (named PMvCG), which aims to model views according to the principles of consistency and complementarity and eventually learn the comprehensive representation of partial multiview data. PMvCG can discover cross-view associations by learning view-sharing and view-specific features of different views in the representation space. The missing views can be reconstructed and are applied in turn to further optimize the model. The estimated uncertainty in the model is also considered and integrated into the representation to improve the performance. We design a variational inference and iterative optimization algorithm to solve PMvCG effectively. We conduct comprehensive experiments on multiple real-world datasets to validate the performance of PMvCG. We compare the PMvCG with various methods by applying the learned representation to clustering and classification. We also provide more insightful analysis to explore the PMvCG, such as convergence analysis, parameter sensitivity analysis, and the effect of uncertainty in the representation. The experimental results indicate that PMvCG obtains promising results and surpasses other comparative methods under different experimental settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Yz完成签到 ,获得积分10
1秒前
Xavier发布了新的文献求助10
1秒前
朵朵发布了新的文献求助10
2秒前
3秒前
3秒前
wxyshare举报薛佳琦求助涉嫌违规
3秒前
3秒前
lalalal发布了新的文献求助10
3秒前
幽默振家完成签到 ,获得积分10
4秒前
4秒前
怡然雨雪完成签到,获得积分0
5秒前
5秒前
科研通AI5应助负蕲采纳,获得10
5秒前
5秒前
小玉完成签到,获得积分10
6秒前
算命的完成签到,获得积分10
7秒前
拼搏老九发布了新的文献求助10
7秒前
7秒前
科研通AI2S应助u9227采纳,获得10
7秒前
SciGPT应助UNIQUE采纳,获得10
7秒前
LaTeXer应助加缪采纳,获得100
8秒前
陈佳祥发布了新的文献求助10
8秒前
ZBY0216完成签到,获得积分10
10秒前
蒋欣欣完成签到,获得积分10
10秒前
10秒前
Lyh发布了新的文献求助10
10秒前
大个应助自然若采纳,获得10
11秒前
CodeCraft应助Xavier采纳,获得10
11秒前
王彦林发布了新的文献求助10
13秒前
waoller1发布了新的文献求助10
13秒前
Mr.Reese完成签到,获得积分10
14秒前
勒布朗爱科研完成签到,获得积分20
14秒前
小草完成签到,获得积分10
15秒前
15秒前
jyx完成签到,获得积分10
15秒前
16秒前
dreamode完成签到,获得积分10
16秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088254
求助须知:如何正确求助?哪些是违规求助? 4303219
关于积分的说明 13410735
捐赠科研通 4129025
什么是DOI,文献DOI怎么找? 2261095
邀请新用户注册赠送积分活动 1265234
关于科研通互助平台的介绍 1199686