氢键
分子
拉曼光谱
化学
表面增强拉曼光谱
拉曼散射
光谱学
斑点
分析化学(期刊)
光化学
物理化学
材料科学
纳米技术
有机化学
物理
光学
量子力学
作者
Flávia C. Marques,Raisa Siqueira Alves,Diego P. dos Santos,Gustavo F. S. Andrade
摘要
The present study reports a direct approach to generate efficient hot spots using a nonresonant molecule bound to the inner part or hot spots that can increase the SERS sensitivity to obtain spectra of one and a few molecules. The 4-Mercaptobenzoic acid (4-MBA) adsorbate, connected to the Ag surface by a thiolate-Ag bonding, was able to trigger a self-assembly process of AgNP, which occurred by cooperative hydrogen bonds between the carboxylic groups of 4-MBA located in different nanoparticles when the pH was adjusted to 4. The self-assembly structure was characterized by UV-Vis spectroscopy and SERS (Surface Enhancement Raman Scattering), and DFT-based calculation of the model complex [AgNP-(4-MBA)2-AgNP] was employed to improve the understanding of the self-assembled complex formation through the comparison of calculated and experimental SERS spectra. The SERS signal of 4-MBA on AgNP above the pKa of the carboxyl group was not observed below 1 × 10-6 mol L-1 in any condition. Additionally, the SERS spectra of 4-bromobezenothiol (4-BrBT) at 5.0 × 10-7 mol L-1 had no bands assignable to 4-BrBT, reinforcing the hypothesis that the SERS intensification for 4-MBA in low concentrations (below 1 × 10-6 mol L-1) is due to the hydrogen bonding triggered self-assembly of AgNP below 4-MBA pKa. The average SERS of the 4-MBA in low surface coverage shows a mixture of structures, such as protonated and deprotonated 4-MBA, as well as a small amount of benzenethiol coming from decarboxylation of part of 4-MBA molecules. The few molecules SERS detection of 4-MBA was demonstrated experimentally and the experimental results were associated with a greater number of hot spots formed, being befitting with the generalized Mie theory simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI