T 3 RD: Test-Time Training for Rumor Detection on Social Media

计算机科学 人工智能 试验数据 机器学习 训练集 谣言 考试(生物学) 试验装置 上传 任务(项目管理) 标记数据 万维网 古生物学 程序设计语言 管理 经济 生物 公共关系 政治学
作者
Huaiwen Zhang,X L Liu,Qing Yang,Yang Yang,Fan Qi,Shengsheng Qian,Changsheng Xu
标识
DOI:10.1145/3589334.3645443
摘要

With the increasing number of news uploaded to the internet daily, rumor detection has garnered significant attention in recent years. Existing rumor detection methods excel on familiar topics with sufficient training data (high resource) collected from the same domain. However, when facing emergent events or rumors propagated in different languages, the performance of these models is significantly degraded, due to the lack of training data and prior knowledge (low resource). To tackle this challenge, we introduce the Test-Time Training for Rumor Detection (T^3RD) to enhance the performance of rumor detection models on low-resource datasets. Specifically, we introduce self-supervised learning (SSL) as an auxiliary task in the test-time training. It consists of global and local contrastive learning, in which the global contrastive learning focuses on obtaining invariant graph representations and the local one focuses on acquiring invariant node representations. We employ the auxiliary SSL tasks for both the training and test-time training phases to mine the intrinsic traits of test samples and further calibrate the trained model for these test samples. To mitigate the risk of distribution distortion in test-time training, we introduce feature alignment constraints aimed at achieving a balanced synergy between the knowledge derived from the training set and the test samples. The experiments conducted on the two widely used cross-domain datasets demonstrate that the proposed model achieves a new state-of-the-art in performance. Our code is available at https://github.com/social-rumors/T3RD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于彦祖应助ly采纳,获得20
刚刚
1秒前
万能图书馆应助wyx采纳,获得10
1秒前
小呆鹿发布了新的文献求助30
1秒前
laopei2001完成签到,获得积分10
3秒前
张玺发布了新的文献求助50
4秒前
6秒前
6秒前
轻松的恋风完成签到,获得积分10
6秒前
小呆鹿完成签到,获得积分10
7秒前
7秒前
光亮的夜雪完成签到,获得积分10
8秒前
8秒前
jenningseastera应助JUGG采纳,获得10
10秒前
星辰大海应助伶俐的鞋子采纳,获得10
11秒前
胡志飞发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
15秒前
15秒前
科研通AI5应助BL采纳,获得10
15秒前
17秒前
jovrtic发布了新的文献求助30
18秒前
18秒前
清秀寇发布了新的文献求助10
19秒前
20秒前
科研通AI2S应助胡志飞采纳,获得10
22秒前
22秒前
22秒前
小小高完成签到 ,获得积分10
23秒前
24秒前
24秒前
111发布了新的文献求助10
24秒前
xiongyue发布了新的文献求助10
26秒前
BL完成签到,获得积分10
26秒前
cccccl发布了新的文献求助10
28秒前
29秒前
热心烙发布了新的文献求助40
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787285
求助须知:如何正确求助?哪些是违规求助? 3332896
关于积分的说明 10258130
捐赠科研通 3048309
什么是DOI,文献DOI怎么找? 1673086
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760303