Identification of risk key factors and prevention strategies for collision accidents between merchant and fishing vessels in China waters based on complex network

垂钓 中国 钥匙(锁) 鉴定(生物学) 自动识别系统 碰撞 业务 法律工程学 工程类 计算机科学 风险分析(工程) 计算机安全 渔业 地理 生态学 考古 生物
作者
Huaxin Zhang,Bingxin Chen,Qiong Zhao,Jiayi Yu,Z-C Fang
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:307: 118148-118148
标识
DOI:10.1016/j.oceaneng.2024.118148
摘要

In recent years, Collision Accidents between Merchant and Fishing Vessels (CAMF) in China waters have been increasing, resulting in severe casualties and property losses. To effectively prevent such frequent collision accidents and ensure the safety of waterways and navigation routes, this study aims to identify the key risk factors associated with CAMF. Firstly, the Human Factors Analysis and Classification System (HFACS) model is employed as a comprehensive framework to extract the risk factors contributing to CAMF. By introducing edge length as the weight of network edges, a directed weighted network of CAMF is constructed. Secondly, the overall topological characteristics of the network are analyzed, and the network's robustness is studied based on the degree centrality, weighted closeness centrality, and weighted betweenness centrality of the risk factors in the network, and the key factors contributing to the accidents are identified. The research findings indicate that the network exhibits evident scale-free characteristics and small-world network properties. Deliberate attacks on approximately top 15% of the risk factors lead to a 55% degradation in the global efficiency of the accident network. Ultimately, accident prevention and control strategies and recommendations are proposed from the perspectives of both merchant and fishing vessels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tian发布了新的文献求助10
1秒前
不会写诗完成签到 ,获得积分10
1秒前
1秒前
2秒前
LMBE1K完成签到 ,获得积分10
2秒前
青柠关注了科研通微信公众号
3秒前
Stevin发布了新的文献求助10
4秒前
5秒前
pluto应助管夜白采纳,获得30
5秒前
5秒前
5秒前
5秒前
无奈的萍发布了新的文献求助10
6秒前
7秒前
土拨鼠发布了新的文献求助10
7秒前
健壮不斜发布了新的文献求助30
7秒前
10秒前
bzlish发布了新的文献求助10
11秒前
YU发布了新的文献求助10
11秒前
萤火发布了新的文献求助10
11秒前
自由山槐发布了新的文献求助10
11秒前
12秒前
Zhang完成签到,获得积分10
13秒前
14秒前
huihui完成签到 ,获得积分10
14秒前
飞向天空的牛完成签到,获得积分10
15秒前
土星发布了新的文献求助10
16秒前
16秒前
wangjunhao完成签到,获得积分10
16秒前
Jasper应助tian采纳,获得10
16秒前
bzlish完成签到,获得积分10
17秒前
青柠发布了新的文献求助10
17秒前
搜集达人应助Xiiwan采纳,获得10
18秒前
丘比特应助George采纳,获得10
19秒前
何仙姑发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
科研通AI5应助氟锑酸采纳,获得10
20秒前
BWZ发布了新的文献求助10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783723
求助须知:如何正确求助?哪些是违规求助? 3328883
关于积分的说明 10239212
捐赠科研通 3044381
什么是DOI,文献DOI怎么找? 1670946
邀请新用户注册赠送积分活动 799982
科研通“疑难数据库(出版商)”最低求助积分说明 759172