Boundary-Aware Gradient Operator Network for Medical Image Segmentation

计算机科学 卷积(计算机科学) 人工智能 卷积神经网络 边界(拓扑) 特征(语言学) 图像分割 分割 模式识别(心理学) 初始化 图像渐变 计算机视觉 人工神经网络 图像纹理 数学 数学分析 哲学 语言学 程序设计语言
作者
Li Yu,Wenwen Min,Shunfang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4711-4723 被引量:5
标识
DOI:10.1109/jbhi.2024.3404273
摘要

Medical image segmentation is a crucial task in computer-aided diagnosis. Although convolutional neural networks (CNNs) have made significant progress in the field of medical image segmentation, the convolution kernels of CNNs are optimized from random initialization without explicitly encoding gradient information, leading to a lack of specificity for certain features, such as blurred boundary features. Furthermore, the frequently applied down-sampling operation also loses the fine structural features in shallow layers. Therefore, we propose a boundary-aware gradient operator network (BG-Net) for medical image segmentation, in which the gradient convolution (GConv) and the boundary-aware mechanism (BAM) modules are developed to simulate image boundary features and the remote dependencies between channels. The GConv module transforms the gradient operator into a convolutional operation that can extract gradient features; it attempts to extract more features such as images boundaries and textures, thereby fully utilizing limited input to capture more features representing boundaries. In addition, the BAM can increase the amount of global contextual information while suppressing invalid information by focusing on feature dependencies and the weight ratios between channels. Thus, the boundary perception ability of BG-Net is improved. Finally, we use a multi-modal fusion mechanism to effectively fuse lightweight gradient convolution and U-shaped branch features into a multilevel feature, enabling global dependencies and low-level spatial details to be effectively captured in a shallower manner. We conduct extensive experiments on eight datasets that broadly cover medical images to evaluate the effectiveness of the proposed BG-Net. The experimental results demonstrate that BG-Net outperforms the state-of-the-art methods, particularly those focused on boundary segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Forever完成签到,获得积分10
1秒前
sb完成签到,获得积分10
2秒前
奥奥没有利饼干完成签到 ,获得积分10
2秒前
大秦帝国发布了新的文献求助10
2秒前
FashionBoy应助不得采纳,获得10
3秒前
3秒前
meww完成签到,获得积分10
3秒前
3秒前
TFY完成签到,获得积分10
4秒前
4秒前
小张医生完成签到,获得积分10
4秒前
哈哈应助灵均采纳,获得10
5秒前
紧张的驳发布了新的文献求助10
5秒前
bluesmile完成签到,获得积分10
6秒前
7秒前
7秒前
默笙发布了新的文献求助10
7秒前
TFY发布了新的文献求助10
7秒前
杨树发布了新的文献求助10
8秒前
在雨里思考完成签到,获得积分10
8秒前
所所应助夜半微风采纳,获得10
8秒前
靓丽傲玉发布了新的文献求助30
9秒前
9秒前
我是老大应助淡淡梦容采纳,获得10
9秒前
11秒前
11秒前
haokeyan完成签到,获得积分10
11秒前
大秦帝国完成签到,获得积分10
11秒前
Wrasul完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
13秒前
敏感芷珍发布了新的文献求助20
13秒前
fifteen应助执着绿草采纳,获得10
13秒前
mangle完成签到,获得积分0
14秒前
破坏王发布了新的文献求助10
14秒前
14秒前
baishui完成签到,获得积分10
14秒前
HRB完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4720853
求助须知:如何正确求助?哪些是违规求助? 4080987
关于积分的说明 12620416
捐赠科研通 3785962
什么是DOI,文献DOI怎么找? 2091098
邀请新用户注册赠送积分活动 1117228
科研通“疑难数据库(出版商)”最低求助积分说明 994012