Boundary-Aware Gradient Operator Network for Medical Image Segmentation

计算机科学 卷积(计算机科学) 人工智能 卷积神经网络 边界(拓扑) 特征(语言学) 图像分割 分割 模式识别(心理学) 初始化 图像渐变 计算机视觉 人工神经网络 图像纹理 数学 数学分析 哲学 语言学 程序设计语言
作者
Li Yu,Wenwen Min,Shunfang Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4711-4723 被引量:5
标识
DOI:10.1109/jbhi.2024.3404273
摘要

Medical image segmentation is a crucial task in computer-aided diagnosis. Although convolutional neural networks (CNNs) have made significant progress in the field of medical image segmentation, the convolution kernels of CNNs are optimized from random initialization without explicitly encoding gradient information, leading to a lack of specificity for certain features, such as blurred boundary features. Furthermore, the frequently applied down-sampling operation also loses the fine structural features in shallow layers. Therefore, we propose a boundary-aware gradient operator network (BG-Net) for medical image segmentation, in which the gradient convolution (GConv) and the boundary-aware mechanism (BAM) modules are developed to simulate image boundary features and the remote dependencies between channels. The GConv module transforms the gradient operator into a convolutional operation that can extract gradient features; it attempts to extract more features such as images boundaries and textures, thereby fully utilizing limited input to capture more features representing boundaries. In addition, the BAM can increase the amount of global contextual information while suppressing invalid information by focusing on feature dependencies and the weight ratios between channels. Thus, the boundary perception ability of BG-Net is improved. Finally, we use a multi-modal fusion mechanism to effectively fuse lightweight gradient convolution and U-shaped branch features into a multilevel feature, enabling global dependencies and low-level spatial details to be effectively captured in a shallower manner. We conduct extensive experiments on eight datasets that broadly cover medical images to evaluate the effectiveness of the proposed BG-Net. The experimental results demonstrate that BG-Net outperforms the state-of-the-art methods, particularly those focused on boundary segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小糊涂仙儿完成签到 ,获得积分10
1秒前
时尚丹寒完成签到 ,获得积分10
1秒前
小青年儿完成签到 ,获得积分10
6秒前
李键刚完成签到,获得积分10
12秒前
高贵的晓筠完成签到 ,获得积分10
12秒前
13秒前
Y_完成签到 ,获得积分10
14秒前
rafa完成签到 ,获得积分10
14秒前
标致幻然完成签到 ,获得积分10
18秒前
一枝完成签到 ,获得积分10
20秒前
23秒前
24秒前
黑眼圈完成签到 ,获得积分10
27秒前
动漫大师发布了新的文献求助10
30秒前
Wang发布了新的文献求助10
30秒前
五月完成签到 ,获得积分10
31秒前
back you up应助科研通管家采纳,获得50
36秒前
cdercder应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
cdercder应助科研通管家采纳,获得10
36秒前
充电宝应助科研通管家采纳,获得10
36秒前
qzp完成签到 ,获得积分10
44秒前
45秒前
娇娇大王完成签到,获得积分10
48秒前
52秒前
John完成签到 ,获得积分10
53秒前
科研完成签到,获得积分10
54秒前
56秒前
56秒前
lx完成签到,获得积分10
57秒前
柠檬要加冰完成签到 ,获得积分10
57秒前
清秀的之桃完成签到 ,获得积分10
59秒前
顺利毕业mpa完成签到,获得积分10
59秒前
拉长的青筠完成签到,获得积分10
59秒前
聪慧芷巧发布了新的文献求助10
1分钟前
xmqaq完成签到,获得积分10
1分钟前
1分钟前
小幸运R完成签到 ,获得积分10
1分钟前
小破网完成签到 ,获得积分0
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792575
求助须知:如何正确求助?哪些是违规求助? 3336794
关于积分的说明 10282208
捐赠科研通 3053626
什么是DOI,文献DOI怎么找? 1675672
邀请新用户注册赠送积分活动 803659
科研通“疑难数据库(出版商)”最低求助积分说明 761495