Deep learning for automated scoring of immunohistochemically stained tumour tissue sections – Validation across tumour types based on patient outcomes

PTEN公司 前列腺癌 MSH6型 免疫组织化学 前列腺 病理 医学 核磷蛋白 肿瘤科 癌症 内科学 结直肠癌 生物 核运输 细胞核 PI3K/AKT/mTOR通路 细胞凋亡 精神科 DNA错配修复 生物化学 核心
作者
Wanja Kildal,Karolina Cyll,Joakim Kalsnes,Rakibul Islam,Frida Marie Ihle Julbø,Manohar Pradhan,Elin Ersvær,Neil A. Shepherd,Ljiljana Vlatkovic,Xavier Tekpli,Øystein Garred,Gunnar B. Kristensen,Hanne A. Askautrud,Tarjei S. Hveem,Håvard E. Danielsen,Tone F. Bathen,Elin Borgen,Anne‐Lise Børresen‐Dale,Olav Engebråten,Britt Fritzman
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (13): e32529-e32529
标识
DOI:10.1016/j.heliyon.2024.e32529
摘要

We aimed to develop deep learning (DL) models to detect protein expression in immunohistochemically (IHC) stained tissue-sections, and to compare their accuracy and performance with manually scored clinically relevant proteins in common cancer types. Five cancer patient cohorts (colon, two prostate, breast, and endometrial) were included. We developed separate DL models for scoring IHC-stained tissue-sections with nuclear, cytoplasmic, and membranous staining patterns. For training, we used images with annotations of cells with positive and negative staining from the colon cohort stained for Ki-67 and PMS2 (nuclear model), the prostate cohort 1 stained for PTEN (cytoplasmic model) and β-catenin (membranous model). The nuclear DL model was validated for MSH6 in the colon, MSH6 and PMS2 in the endometrium, Ki-67 and CyclinB1 in prostate, and oestrogen and progesterone receptors in the breast cancer cohorts. The cytoplasmic DL model was validated for PTEN and Mapre2, and the membranous DL model for CD44 and Flotillin1, all in prostate cohorts. When comparing the results of manual and DL scores in the validation sets, using manual scores as the ground truth, we observed an average correct classification rate of 91.5 % (76.9–98.5 %) for the nuclear model, 85.6 % (73.3–96.6 %) for the cytoplasmic model, and 78.4 % (75.5–84.3 %) for the membranous model. In survival analyses, manual and DL scores showed similar prognostic impact, with similar hazard ratios and p-values for all DL models. Our findings demonstrate that DL models offer a promising alternative to manual IHC scoring, providing efficiency and reproducibility across various data sources and markers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
是龙龙呀发布了新的文献求助10
1秒前
文艺的从凝完成签到,获得积分10
2秒前
3秒前
dara发布了新的文献求助10
5秒前
7秒前
小盘子完成签到,获得积分10
10秒前
10秒前
脑洞疼应助禾七采纳,获得10
11秒前
无花果应助cloudss采纳,获得10
13秒前
14秒前
SYLH应助hkh采纳,获得10
15秒前
SYLH应助hkh采纳,获得10
15秒前
SYLH应助hkh采纳,获得10
15秒前
稳重怀寒应助hkh采纳,获得10
15秒前
SYLH应助hkh采纳,获得10
15秒前
SYLH应助hkh采纳,获得10
15秒前
SYLH应助hkh采纳,获得10
15秒前
SYLH应助hkh采纳,获得10
15秒前
zlm1996发布了新的文献求助10
16秒前
ly完成签到 ,获得积分10
18秒前
天将明完成签到 ,获得积分10
19秒前
可乐完成签到,获得积分10
20秒前
CipherSage应助贰萌采纳,获得10
21秒前
22秒前
维生素CCC完成签到 ,获得积分10
22秒前
渣渣完成签到 ,获得积分10
26秒前
YY-Bubble完成签到,获得积分10
27秒前
Hysen_L完成签到,获得积分10
27秒前
cloudss发布了新的文献求助10
28秒前
Leeu完成签到,获得积分10
29秒前
孟浩然关注了科研通微信公众号
30秒前
jijijibibibi完成签到,获得积分10
30秒前
36秒前
qqqyoyoyo完成签到,获得积分10
37秒前
111完成签到,获得积分10
37秒前
lkl完成签到 ,获得积分10
39秒前
qqqyoyoyo发布了新的文献求助10
40秒前
42秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825690
求助须知:如何正确求助?哪些是违规求助? 3367855
关于积分的说明 10448181
捐赠科研通 3087314
什么是DOI,文献DOI怎么找? 1698581
邀请新用户注册赠送积分活动 816841
科研通“疑难数据库(出版商)”最低求助积分说明 769973