高光谱成像
模式识别(心理学)
人工智能
特征提取
对偶(语法数字)
地理
计算机科学
特征(语言学)
图像(数学)
上下文图像分类
萃取(化学)
地图学
化学
艺术
语言学
哲学
文学类
色谱法
作者
Md. Touhid Islam,Md. Rashedul Islam,Abdulla Al Mamun
标识
DOI:10.1080/14498596.2024.2364231
摘要
Hyperspectral imaging is increasingly important in academia and various professions, facing challenges like redundant features, inter-class correlations, and the curse of dimensionality. Principal Component Analysis and its variants, such as Sparse-PCA and Segmented-PCA, reduce the dimensionality of hyperspectral data but interpreting PCA results is complex. Our SPCA-mRMR technique integrates Sparse-PCA with a greedy feature selection method, mRMR. This, combined with a Dual Branch CNN model, improves hyperspectral image analysis, especially with noisy or limited data. Optimization reduces computational costs and enhances classification accuracy. Evaluations show our method's efficiency, using fewer variables without compromising accuracy, crucial for advancing HSI applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI