清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Discriminative analysis of schizophrenia and major depressive disorder using fNIRS

精神分裂症(面向对象编程) 判别式 重性抑郁障碍 心理学 精神科 临床心理学 人工智能 计算机科学 心情
作者
Yunheng Diao,Huiying Wang,Xinyu Wang,Chen Qiu,Zhangui Wang,Ziyang Ji,Chao Wang,Jingyang Gu,Cong Liu,Kai Wu,Changhong Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:361: 256-267
标识
DOI:10.1016/j.jad.2024.06.013
摘要

Research into the shared and distinct brain dysfunctions in patients with schizophrenia (SCZ) and major depressive disorder (MDD) has been increasing. However, few studies have explored the application of functional near-infrared spectroscopy (fNIRS) in investigating brain dysfunction and enhancing diagnostic methodologies in these two conditions. A general linear model was used for analysis of brain activation following task-state fNIRS from 131 patients with SCZ, 132 patients with MDD and 130 healthy controls (HCs). Subsequently, seventy-seven time-frequency analysis methods were used to construct new features of fNIRS, followed by the implementation of five machine learning algorithms to develop a differential diagnosis model for the three groups. This model was evaluated by comparing it to both a diagnostic model relying on traditional fNIRS features and assessments made by two psychiatrists. Brain activation analysis revealed significantly lower activation in Broca's area, the dorsolateral prefrontal cortex, and the middle temporal gyrus for both the SCZ and MDD groups compared to HCs. Additionally, the SCZ group exhibited notably lower activation in the superior temporal gyrus and the subcentral gyrus compared to the MDD group. When distinguishing among the three groups using independent validation datasets, the models utilizing new fNIRS features achieved an accuracy of 85.90 % (AUC = 0.95). In contrast, models based on traditional fNIRS features reached an accuracy of 52.56 % (AUC = 0.66). The accuracies of the two psychiatrists were 42.00 % (AUC = 0.60) and 38.00 % (AUC = 0.50), respectively. This investigation brings to light the shared and distinct neurobiological abnormalities present in SCZ and MDD, offering potential enhancements for extant diagnostic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucifer完成签到 ,获得积分10
15秒前
大医仁心完成签到 ,获得积分10
17秒前
jerry完成签到,获得积分10
1分钟前
1分钟前
无极微光应助波西米亚采纳,获得20
2分钟前
2分钟前
2分钟前
kbcbwb2002完成签到,获得积分10
2分钟前
wuju完成签到,获得积分10
3分钟前
ZYP完成签到,获得积分10
3分钟前
义气的玉米完成签到,获得积分10
3分钟前
稻子完成签到 ,获得积分10
3分钟前
xun完成签到,获得积分20
3分钟前
科目三应助xun采纳,获得10
3分钟前
Orange应助科研通管家采纳,获得10
3分钟前
孤独的雄鹰完成签到,获得积分10
3分钟前
研友_VZG7GZ应助TJW采纳,获得30
4分钟前
波里舞完成签到 ,获得积分10
4分钟前
培培完成签到 ,获得积分10
4分钟前
zsmj23完成签到 ,获得积分0
4分钟前
哈哈完成签到 ,获得积分10
5分钟前
852应助科研通管家采纳,获得10
5分钟前
yuyuyu完成签到 ,获得积分10
6分钟前
无奈的萍完成签到,获得积分10
7分钟前
NiNi完成签到 ,获得积分10
8分钟前
在水一方完成签到 ,获得积分10
8分钟前
9分钟前
qjd发布了新的文献求助10
9分钟前
两个榴莲完成签到,获得积分0
12分钟前
月军完成签到,获得积分10
13分钟前
Achuia完成签到,获得积分10
14分钟前
平常心完成签到,获得积分10
14分钟前
SCI的芷蝶完成签到 ,获得积分10
15分钟前
15分钟前
r1915发布了新的文献求助260
15分钟前
紫色哀伤完成签到,获得积分10
15分钟前
庾稀完成签到,获得积分20
15分钟前
小瓶盖完成签到 ,获得积分10
15分钟前
萝卜猪完成签到,获得积分10
15分钟前
激动的似狮完成签到,获得积分10
16分钟前
高分求助中
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
Bond and Bond Option Pricing based on the Current Term Structure 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4787372
求助须知:如何正确求助?哪些是违规求助? 4112959
关于积分的说明 12723648
捐赠科研通 3838667
什么是DOI,文献DOI怎么找? 2116328
邀请新用户注册赠送积分活动 1139106
关于科研通互助平台的介绍 1026055