Enhanced Bearing Fault Diagnosis Through Trees Ensemble Method and Feature Importance Analysis

方位(导航) 特征(语言学) 断层(地质) 计算机科学 模式识别(心理学) 故障树分析 人工智能 地质学 工程类 地震学 可靠性工程 哲学 语言学
作者
Amir Alhams,Ahmed Abdelhadi,Yousif Badri,Sadok Sassi,Jamil Renno
出处
期刊:Journal of vibration engineering & technologies [Springer Science+Business Media]
被引量:2
标识
DOI:10.1007/s42417-024-01405-0
摘要

Abstract Purpose This research introduces a groundbreaking method for bearing defect detection. It leverages ensemble machine learning (ML) models and conducts comprehensive feature importance analysis. The key innovation is the training and benchmarking of three tree ensemble models—Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—on an extensive experimental dataset (QU-DMBF) collected from bearing tests with seeded defects of varying sizes on the inner and outer raceways under different operating conditions. Method The dataset was meticulously prepared with categorical variable encoding and Min–Max data normalization to ensure consistent class distribution and model accuracy. Implementing the ML models involved a grid search method for hyperparameter tuning, focusing on reporting the models’ accuracy. The study also explores applying ensemble methods and using supervised and unsupervised learning algorithms for bearing fault detection. It underscores the value of feature importance analysis in understanding the contributions of specific inputs to the model’s performance. The research compares the ML models to traditional methods and discusses their potential for advanced fault diagnosis in bearing systems. Results and Conclusions The XGBoost model, trained on data from actual bearing tests, outperformed the others, achieving 92% accuracy in detecting bearing health and fault location. However, a deeper analysis of feature importance reveals that the models weigh certain experimental conditions differently—such as sensor location and motor speed. This research’s primary novelties and contributions are comparative evaluation, experimental validation, accuracy benchmarking, and interpretable feature importance analysis. This comprehensive methodology advances the bearing health monitoring field and has significant practical implications for condition-based maintenance, potentially leading to substantial cost savings and improved operational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助One采纳,获得10
刚刚
rh1006完成签到,获得积分10
3秒前
小二郎应助笑笑采纳,获得100
5秒前
阿飞完成签到,获得积分10
6秒前
Doctor Tang完成签到,获得积分10
7秒前
科研通AI2S应助缓慢荔枝采纳,获得10
7秒前
7秒前
M先生完成签到,获得积分20
9秒前
10秒前
yirann完成签到,获得积分10
10秒前
无花果应助mSnBmaterial采纳,获得10
11秒前
11秒前
orixero应助默默洋葱采纳,获得10
14秒前
默默碧空发布了新的文献求助10
15秒前
16秒前
18秒前
SHD完成签到 ,获得积分10
20秒前
欣喜蘑菇发布了新的文献求助20
20秒前
完美世界应助yirann采纳,获得10
21秒前
24秒前
24秒前
25秒前
芋泥发布了新的文献求助10
25秒前
苹果笑寒完成签到,获得积分10
27秒前
shinn完成签到,获得积分10
27秒前
28秒前
One发布了新的文献求助10
29秒前
FP完成签到 ,获得积分10
30秒前
31秒前
Jero发布了新的文献求助10
32秒前
33秒前
34秒前
Ava应助科研通管家采纳,获得10
35秒前
上官若男应助科研通管家采纳,获得10
35秒前
丘比特应助科研通管家采纳,获得10
35秒前
wu8577应助科研通管家采纳,获得10
35秒前
Hello应助科研通管家采纳,获得100
35秒前
wu8577应助科研通管家采纳,获得10
35秒前
35秒前
小蘑菇应助科研通管家采纳,获得10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382