Three-Dimensional Magnetotelluric Forward Modeling Through Deep Learning

大地电磁法 深度学习 计算机科学 人工智能 地质学 遥感 地球物理学 电气工程 电阻率和电导率 工程类
作者
Xuben Wang,Peifan Jiang,Fei Deng,Shuang Wang,Rui Yang,Chongxin Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:10
标识
DOI:10.1109/tgrs.2024.3401587
摘要

For a long time, the 2-D and 3-D Magnetotelluric (MT) forward modeling is mainly accomplished by computational methods. Traditional methods are time consuming due to the large amounts of discrete grids and slow solution of the matrix equation. Therefore, finding a fast forward modeling algorithm remains a major concern. In recent years, deep learning has provided new ways to accomplish this goal. Most existing deep learning-based MT forward modeling are performed on 2-D data, and there is a lack of research on the feasibility of 3-D problems. this paper constructs a large-scale 3-D MT dataset; employs a deep neural network suitable for 3-D MT data patterns, and improving the training efficiency through a transfer learning strategy for similar tasks, that can predict the apparent resistivity and phases in different polarization directions, and realizes fast and high-precision 3-D MT deep learning forward modeling. The experimental quantitative metrics show that the mean relative errors of apparent resistivity and phase are 0.6042% and 0.2423%, respectively, and the mean absolute errors are 1.6726 and 0.0994, respectively. When applying the method to geoelectric models that are more complex than the training set, accurate forward modeling results validate its generalization ability. The research may provide methodological and data support for larger-scale 3-D MT forward modeling in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
viny发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
勤恳擎宇发布了新的文献求助10
1秒前
2秒前
orixero应助Zhjie126采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
Iridesent0v0发布了新的文献求助10
3秒前
CodeCraft应助andurance采纳,获得20
4秒前
NexusExplorer应助MingFei采纳,获得10
4秒前
研友_enPJa8发布了新的文献求助10
4秒前
小二郎应助九霄采纳,获得10
4秒前
好好好完成签到 ,获得积分10
5秒前
zz完成签到,获得积分20
5秒前
追寻裘发布了新的文献求助10
5秒前
汉堡包应助生菜采纳,获得10
6秒前
6秒前
不安冰棍发布了新的文献求助10
6秒前
6秒前
ZXS发布了新的文献求助10
6秒前
7秒前
zccc发布了新的文献求助10
7秒前
white完成签到,获得积分10
7秒前
勤恳擎宇完成签到,获得积分10
7秒前
8秒前
8秒前
zhendezy发布了新的文献求助10
9秒前
9秒前
9秒前
可爱语芹发布了新的文献求助10
9秒前
能干的人发布了新的文献求助10
10秒前
112完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
sui发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5654703
求助须知:如何正确求助?哪些是违规求助? 4795175
关于积分的说明 15070153
捐赠科研通 4813276
什么是DOI,文献DOI怎么找? 2575068
邀请新用户注册赠送积分活动 1530558
关于科研通互助平台的介绍 1489137