间充质干细胞
透明质酸
干细胞
细胞外基质
活力测定
化学
细胞生物学
肺
生物医学工程
细胞疗法
细胞
医学
生物
生物化学
解剖
内科学
作者
Francesca Della Sala,Gennaro Longobardo,Assunta Borzacchiello
标识
DOI:10.1021/acsabm.3c01218
摘要
Cell therapy has the potential to become a feasible solution for several diseases, such as those related to the lungs and airways, considering the more beneficial intratracheal administration route. However, in lung diseases, an impaired pulmonary extracellular matrix (ECM) precludes injury resolution with a faulty engraftment of mesenchymal stem cells (MSCs) at the lung level. Furthermore, a shielding strategy to avoid cell damage as well as cell loss due to backflow through the injection path is required. Here, an approach to deliver cells encapsulated in a biomimetic stem niche is used, in which the interplay between cells and physiological lung ECM constituents, such as collagen and hyaluronic acid (HA), can occur. To this aim, a biphasic delivery system based on MSCs encapsulated in collagen microspheres (mCOLLs) without chemical modification and embedded in an injectable HA solution has been developed. Such biphasic delivery systems can both increase the mucoadhesive properties at the site of interest and improve cell viability and pulmonary differentiation. Rheological results showed a similar viscosity at high shear rates compared to the MSC suspension used in intratracheal administration. The size of the mCOLLs can be controlled, resulting in a lower value of 200 μm, suitable for delivery in alveolar sacs. Biological results showed that mCOLLs maintained good cell viability, and when they were suspended in lung medium implemented with low molecular weight HA, the differentiation ability of the MSCs was further enhanced compared to their differentiation ability in only lung medium. Overall, the results showed that this strategy has the potential to improve the delivery and viability of MSCs, along with their differentiation ability, in the pulmonary lineage.
科研通智能强力驱动
Strongly Powered by AbleSci AI