组合数学
数学
总着色
完全着色
图形
列表着色
平面图
图形着色
边着色
离散数学
图形功率
折线图
作者
Hongjun Du,Huijuan Wang,Weili Wu
出处
期刊:Discrete Mathematics, Algorithms and Applications
[World Scientific]
日期:2023-05-05
卷期号:16 (04)
标识
DOI:10.1142/s1793830923500465
摘要
Given a graph [Formula: see text] and a proper total [Formula: see text]-coloring [Formula: see text]: [Formula: see text], we call [Formula: see text] neighbor sum distinguishing total coloring provided [Formula: see text] for any [Formula: see text] where [Formula: see text] for any [Formula: see text]. Neighbor sum distinguishing total coloring was first defined by Pilśniak and Woźniak. They conjectured [Formula: see text] colors enable any graph [Formula: see text] to admit such a coloring. The neighbor sum distinguishing total chromatic number [Formula: see text] is the minimum integer where a graph is needed for this coloring. In this paper, we present two conclusions that [Formula: see text] provided there are no 3-cycles adjacent to 4-cycles in a planar graph [Formula: see text] with [Formula: see text] without cut edges, and [Formula: see text] provided there are no 4-cycles intersecting with 6-cycles in a planar graph [Formula: see text] with [Formula: see text].
科研通智能强力驱动
Strongly Powered by AbleSci AI