A Self-Representation Method with Local Similarity Preserving for Fast Multi-View Outlier Detection

离群值 计算机科学 异常检测 相似性(几何) 数据挖掘 代表(政治) 领域(数学) 人工智能 关系(数据库) 模式识别(心理学) 时间复杂性 算法 数学 图像(数学) 政治 政治学 纯数学 法学
作者
Yu Wang,Chuan Chen,Jinrong Lai,Lele Fu,Yuren Zhou,Zibin Zheng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (1): 1-20 被引量:15
标识
DOI:10.1145/3532191
摘要

With the rapidly growing attention to multi-view data in recent years, multi-view outlier detection has become a rising field with intense research. These researches have made some success, but still exist some issues that need to be solved. First, many multi-view outlier detection methods can only handle datasets that conform to the cluster structure but are powerless for complex data distributions such as manifold structures. This overly restrictive data assumption limits the applicability of these methods. In addition, almost the majority of multi-view outlier detection algorithms cannot solve the online detection problem of multi-view outliers. To address these issues, we propose a new detection method based on the local similarity relation and data reconstruction, i.e., the Self-Representation Method with Local Similarity Preserving for fast multi-view outlier detection (SRLSP). By using the local similarity structure, the proposed method fully utilizes the characteristics of outliers and detects outliers with an applicable objective function. Besides, a well-designed optimization algorithm is proposed, which completes each iteration with linear time complexity and can calculate each instance parallelly. Also, the optimization algorithm can be easily extended to the online version, which is more suitable for practical production environments. Extensive experiments on both synthetic and real-world datasets demonstrate the superiority of the proposed method on both performance and time complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CatherineRR完成签到,获得积分10
2秒前
卡卡西应助qqqqwf采纳,获得20
2秒前
xiong完成签到 ,获得积分10
2秒前
qwe22222222222完成签到,获得积分10
2秒前
zz发布了新的文献求助10
2秒前
2秒前
浮流少年完成签到,获得积分10
3秒前
SCI关闭了SCI文献求助
3秒前
tRNA完成签到,获得积分10
3秒前
3秒前
hairgod发布了新的文献求助10
4秒前
ZHONK1NG发布了新的文献求助10
4秒前
CatherineRR发布了新的文献求助10
5秒前
领导范儿应助moonlight采纳,获得10
5秒前
5秒前
务实的犀牛完成签到,获得积分10
5秒前
777发布了新的文献求助10
6秒前
海浪发布了新的文献求助10
6秒前
慕舒完成签到,获得积分20
6秒前
wanci应助香蕉初瑶采纳,获得10
7秒前
科研助手6应助相信...就好采纳,获得10
8秒前
9秒前
Orange应助ZHONK1NG采纳,获得10
9秒前
水星完成签到,获得积分10
10秒前
杨艳完成签到 ,获得积分10
10秒前
777完成签到,获得积分10
10秒前
我是老大应助zc采纳,获得20
10秒前
solitude完成签到,获得积分20
11秒前
11秒前
wxz发布了新的文献求助10
11秒前
大大彬发布了新的文献求助10
11秒前
朴素爆米花完成签到,获得积分10
12秒前
欢喜念双发布了新的文献求助10
12秒前
沁沁沁发布了新的文献求助10
13秒前
赘婿应助慕舒采纳,获得10
13秒前
hihi发布了新的文献求助10
13秒前
solitude发布了新的文献求助10
13秒前
快乐难敌发布了新的文献求助10
13秒前
bkagyin应助无不破哉采纳,获得10
14秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816877
求助须知:如何正确求助?哪些是违规求助? 3360272
关于积分的说明 10407488
捐赠科研通 3078282
什么是DOI,文献DOI怎么找? 1690682
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958