Deep Learning‐Based Multiparametric MRI Model for Preoperative T‐Stage in Rectal Cancer

医学 接收机工作特性 阶段(地层学) 结直肠癌 T级 逻辑回归 卡帕 放射科 人口 深度学习 癌症 核医学 人工智能 内科学 计算机科学 数学 古生物学 环境卫生 生物 几何学
作者
Yaru Wei,Haojie Wang,Zhongwei Chen,Ying Zhu,Yingfa Li,Beichen Lu,Kehua Pan,Caiyun Wen,Guoquan Cao,Yun He,Jiejie Zhou,Zhifang Pan,Meihao Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 1083-1092 被引量:17
标识
DOI:10.1002/jmri.28856
摘要

Background Conventional MRI staging can be challenging in the preoperative assessment of rectal cancer. Deep learning methods based on MRI have shown promise in cancer diagnosis and prognostication. However, the value of deep learning in rectal cancer T‐staging is unclear. Purpose To develop a deep learning model based on preoperative multiparametric MRI for evaluation of rectal cancer and to investigate its potential to improve T‐staging accuracy. Study Type Retrospective. Population After cross‐validation, 260 patients (123 with T‐stage T1‐2 and 134 with T‐stage T3‐4) with histopathologically confirmed rectal cancer were randomly divided to the training (N = 208) and test sets (N = 52). Field Strength/Sequence 3.0 T/Dynamic contrast enhanced ( DCE ), T2 ‐weighted imaging ( T2W ), and diffusion‐weighted imaging ( DWI ). Assessment The deep learning (DL) model of multiparametric (DCE, T2W, and DWI) convolutional neural network were constructed for evaluating preoperative diagnosis. The pathological findings served as the reference standard for T‐stage. For comparison, the single parameter DL‐model, a logistic regression model composed of clinical features and subjective assessment of radiologists were used. Statistical Tests The receiver operating characteristic curve (ROC) was used to evaluate the models, the Fleiss' kappa for the intercorrelation coefficients, and DeLong test for compare the diagnostic performance of ROCs. P ‐values less than 0.05 were considered statistically significant. Results The Area Under Curve (AUC) of the multiparametric DL‐model was 0.854, which was significantly higher than the radiologist's assessment (AUC = 0.678), clinical model (AUC = 0.747), and the single parameter DL‐models including T2W‐model (AUC = 0.735), DWI‐model (AUC = 0.759), and DCE‐model (AUC = 0.789). Data Conclusion In the evaluation of rectal cancer patients, the proposed multiparametric DL‐model outperformed the radiologist's assessment, the clinical model as well as the single parameter models. The multiparametric DL‐model has the potential to assist clinicians by providing more reliable and precise preoperative T staging diagnosis. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的冰蓝完成签到,获得积分10
2秒前
博博完成签到,获得积分20
3秒前
3秒前
柠檬没我萌完成签到,获得积分10
6秒前
研友_VZG7GZ应助华西采纳,获得10
6秒前
ALVIN完成签到,获得积分10
6秒前
正直尔容发布了新的文献求助20
7秒前
张大恒完成签到,获得积分10
9秒前
负责的调料汁完成签到,获得积分10
12秒前
执着的导师完成签到,获得积分10
13秒前
耍酷寻双完成签到 ,获得积分10
14秒前
15秒前
15秒前
16秒前
16秒前
粘住驳回了赘婿应助
16秒前
18秒前
linmo发布了新的文献求助10
19秒前
英姑应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
星禾吾应助科研通管家采纳,获得20
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
Chelry完成签到,获得积分10
19秒前
19秒前
李健应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
20秒前
星禾吾应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
星禾吾应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
21秒前
wanci应助科研通管家采纳,获得10
21秒前
苦学僧应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4775469
求助须知:如何正确求助?哪些是违规求助? 4107830
关于积分的说明 12706649
捐赠科研通 3828950
什么是DOI,文献DOI怎么找? 2112319
邀请新用户注册赠送积分活动 1136182
关于科研通互助平台的介绍 1019863