氧化还原                        
                
                                
                        
                            电化学                        
                
                                
                        
                            阴极                        
                
                                
                        
                            化学                        
                
                                
                        
                            八面体                        
                
                                
                        
                            离子半径                        
                
                                
                        
                            离子键合                        
                
                                
                        
                            价(化学)                        
                
                                
                        
                            材料科学                        
                
                                
                        
                            结晶学                        
                
                                
                        
                            离子                        
                
                                
                        
                            无机化学                        
                
                                
                        
                            物理化学                        
                
                                
                        
                            电极                        
                
                                
                        
                            晶体结构                        
                
                                
                        
                            有机化学                        
                
                        
                    
            作者
            
                Yunshan Jiang,Hong-mo Zhu,Liang Deng,Xinyu Li,Ke Wang,Xia Yang,Fu‐Da Yu,Lei Zhao,Zhen‐Bo Wang            
         
                    
        
    
            
            标识
            
                                    DOI:10.1016/j.apsusc.2023.158049
                                    
                                
                                 
         
        
                
            摘要
            
            Disordered rocksalt (DRX) cathodes are promising for next-generation lithium-ion batteries due to its high discharge capacity. Benefiting from the high degree of freedom in compositional design, cationic multi-electron redox is realized through the stabilization of d0 transition metals (TMs), and irreversible oxygen loss is alleviated by increased TM capacity contribution. However, such materials reported so far are almost weakly crystalline (fluorine)oxides prepared by mechanochemical methods. Herein, we prepare highly crystalline Mn(II)-based DRX oxides Li1.15Mn0.275Ti0.575O2 (LMTO), and Li1.23Mn0.275Ti0.255Nb0.24O2 (LMTNO) with partial d0 Ti4+ replaced by d0 Nb5+. Increased lattice spacings of LMTNO are confirmed due to the larger ionic radius of Nb5+, which is conducive to Li+ diffusion. In combination with bond-valence sum method and electrochemical impedance spectroscopy, lower Li+ percolation energy and better rate performance of LMTNO are demonstrated kinetically. Density functional calculations reveal that d0 Nb5+ is superior to d0 Ti4+ for the stabilization of Mn-O bonds, and relieves MnO6 octahedral distortion to alleviate the Jahn-Teller effect. In-situ X-ray diffraction indicates that the structural evolution and redox reaction are more reversible in LMTNO during the electrochemical process. This work understands the effect of d0 TMs on the electrochemical performance of DRX cathodes and provides new insights into multi-electron redox.
         
            
 
                 
                
                    
                    科研通智能强力驱动
Strongly Powered by AbleSci AI