Transformer-Based Imitative Reinforcement Learning for Multirobot Path Planning

强化学习 计算机科学 机器人 运动规划 变压器 人工智能 模仿 人工神经网络 移动机器人 路径(计算) 分布式计算 工程类 计算机网络 电压 社会心理学 电气工程 心理学
作者
Lin Chen,Yaonan Wang,Zhiqiang Miao,Yang Mo,Mingtao Feng,Zhen Zhou,Hesheng Wang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (10): 10233-10243 被引量:33
标识
DOI:10.1109/tii.2023.3240585
摘要

Multirobot path planning leads multiple robots from start positions to designated goal positions by generating efficient and collision-free paths. Multirobot systems realize coordination solutions and decentralized path planning, which is essential for large-scale systems. The state-of-the-art decentralized methods utilize imitation learning and reinforcement learning methods to teach fully decentralized policies, dramatically improving their performance. However, these methods cannot enable robots to perform tasks efficiently in relatively dense environments without communication between robots. We introduce the transformer structure into policy neural networks for the first time, dramatically enhancing the ability of policy neural networks to extract features that facilitate collaboration between robots. It mainly focuses on improving the performance of policies in relatively dense multirobot environments under conditions where robots do not communicate with each other. Furthermore, a novel imitation reinforcement learning framework is proposed by combining contrastive learning and double deep Q-network to solve the problem of difficulty training policy neural networks after introducing the transformer structure. We present results in the simulation environment and compare the resulting policy against advanced multirobot path-planning methods in terms of success rate. Simulation results show that our policy achieves state-of-the-art performance when there is no communication between robots. Finally, we experimented with a real-world case using a total of three robots in our robotic laboratory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fangzh完成签到,获得积分10
刚刚
zhangjianan完成签到,获得积分20
刚刚
和谐念瑶发布了新的文献求助10
1秒前
有求必应屋完成签到,获得积分10
1秒前
科科完成签到 ,获得积分20
3秒前
4秒前
送你一颗流星关注了科研通微信公众号
4秒前
绵羊粉发布了新的文献求助10
4秒前
6秒前
7秒前
wanci应助QWQW采纳,获得30
7秒前
虚心以丹完成签到,获得积分10
8秒前
9秒前
缥缈完成签到 ,获得积分10
10秒前
CC完成签到,获得积分20
10秒前
雪白发卡完成签到,获得积分10
11秒前
龍焱发布了新的文献求助10
11秒前
wwwwnr发布了新的文献求助10
12秒前
酷波er应助Cxxxx采纳,获得10
12秒前
vicky发布了新的文献求助10
13秒前
13秒前
15秒前
小马甲应助科科采纳,获得10
15秒前
羊羊发布了新的文献求助20
17秒前
17秒前
Jasper应助恐龙让梨采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
端庄亦巧发布了新的文献求助10
19秒前
jacob258完成签到 ,获得积分10
20秒前
HR112发布了新的文献求助10
22秒前
研友_VZG7GZ应助丢丢银采纳,获得10
25秒前
25秒前
vivi完成签到,获得积分10
25秒前
26秒前
Akim应助龍焱采纳,获得10
27秒前
凡平发布了新的文献求助10
27秒前
YH应助eeo采纳,获得60
28秒前
28秒前
糖糖完成签到 ,获得积分10
29秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
求助→丁香园·用药助手2025版《临床决策疾病100问》的全套电子版PDF 1000
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874854
求助须知:如何正确求助?哪些是违规求助? 3417218
关于积分的说明 10702732
捐赠科研通 3141610
什么是DOI,文献DOI怎么找? 1733408
邀请新用户注册赠送积分活动 836035
科研通“疑难数据库(出版商)”最低求助积分说明 782337