PIMSAB: A Processing-In-Memory System with Spatially-Aware Communication and Bit-Serial-Aware Computation

计算机科学 电信 物理
作者
Siyuan Ma,Kaustubh Mhatre,Jian Weng,Bagus Hanindhito,Zhengrong Wang,Tony Nowatzki,Lizy K. John,Aman Arora
出处
期刊:ACM Transactions on Architecture and Code Optimization [Association for Computing Machinery]
卷期号:21 (4): 1-27 被引量:2
标识
DOI:10.1145/3690824
摘要

Bit-serial Processing-In-Memory (PIM) is an attractive paradigm for accelerator architectures, for parallel workloads such as Deep Learning (DL), because of its capability to achieve massive data parallelism at a low area overhead and provide orders-of-magnitude data movement savings by moving computational resources closer to the data. While many PIM architectures have been proposed, improvements are needed in communicating intermediate results to consumer kernels, for communication between tiles at scale, for reduction operations, and for efficiently performing bit-serial operations with constants. We present PIMSAB, a scalable architecture that provides a spatially aware communication network for efficient intra-tile and inter-tile data movement and provides efficient computation support for generally inefficient bit-serial compute patterns. Our architecture consists of a massive hierarchical array of compute-enabled SRAMs (CRAMs), which is codesigned with a compiler to achieve high utilization. The key novelties of our architecture are (1) in providing efficient support for spatially aware communication by providing local H-tree network for reductions, by adding explicit hardware for shuffling operands, and by deploying systolic broadcasting, as well as (2) by taking advantage of the divisible nature of bit-serial computations through adaptive precision and efficient handling of constant operations. These innovations are integrated into a tensor expressions-based programming framework (including a compiler for easy programmability) that enables simple programmer control of optimizations for mapping programs into massively parallel binaries for millions of PIM processing elements. When compared against a similarly provisioned modern Tensor Core GPU (NVIDIA A100), across common DL kernels and end-to-end DL networks (Resnet18 and BERT), PIMSAB outperforms the GPU by 4.80×, and reduces energy by 3.76×. We compare PIMSAB with similarly provisioned state-of-the-art SRAM PIM (Duality Cache) and DRAM PIM (SIMDRAM), and observe a speedup of 3.7× and 3.88×, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xaun完成签到,获得积分10
刚刚
陈二坎完成签到 ,获得积分10
1秒前
cheng发布了新的文献求助30
1秒前
共享精神应助大胆寒风采纳,获得10
2秒前
科研通AI6应助123321采纳,获得10
2秒前
2秒前
外向雁梅发布了新的文献求助10
2秒前
科研通AI6应助xjc采纳,获得10
2秒前
顺利含玉发布了新的文献求助10
3秒前
NexusExplorer应助椿人采纳,获得10
3秒前
李健的小迷弟应助椿人采纳,获得10
3秒前
kai chen应助椿人采纳,获得10
3秒前
李健应助椿人采纳,获得10
4秒前
善学以致用应助椿人采纳,获得10
4秒前
深情安青应助椿人采纳,获得10
4秒前
汐鹿完成签到,获得积分10
4秒前
xaun发布了新的文献求助10
4秒前
4秒前
宋鸣鸣完成签到,获得积分20
5秒前
丘比特应助快乐的大脚采纳,获得10
5秒前
星之所在应助呆萌棒棒糖采纳,获得20
5秒前
5秒前
桐桐应助感动城采纳,获得10
6秒前
一一发布了新的文献求助10
6秒前
Dylan完成签到,获得积分10
7秒前
佳佳发布了新的文献求助10
8秒前
9秒前
李健的小迷弟应助敏家采纳,获得10
9秒前
9秒前
想人陪的子骞完成签到,获得积分10
10秒前
大龙哥886应助小也同学采纳,获得10
11秒前
kai chen应助OPV-Small-cui采纳,获得10
11秒前
clearlove完成签到,获得积分10
11秒前
酷波er应助考研小白采纳,获得10
11秒前
无情妙菡完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
FashionBoy应助刘德新采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630726
求助须知:如何正确求助?哪些是违规求助? 4723433
关于积分的说明 14975167
捐赠科研通 4788960
什么是DOI,文献DOI怎么找? 2557317
邀请新用户注册赠送积分活动 1518042
关于科研通互助平台的介绍 1478679