Lipidomic Risk Score to Enhance Cardiovascular Risk Stratification for Primary Prevention

医学 危险分层 初级预防 分层(种子) 内科学 心血管健康 弗雷明翰风险评分 风险评估 重症监护医学 心脏病学 疾病 生物 计算机科学 休眠 计算机安全 发芽 植物 种子休眠
作者
Jing Qin Wu,Corey Giles,Aleksandar Dakic,Habtamu B. Beyene,Kevin Huynh,Tingting Wang,Thomas G. Meikle,Gavriel Olshansky,Agus Salim,Thy Duong,Gerald F. Watts,Joseph Hung,Jennie Hui,Gemma Cadby,John Beilby,John Blangero,Eric K. Moses,Jonathan E. Shaw,Dianna J. Magliano,Dantong Zhu
出处
期刊:Journal of the American College of Cardiology [Elsevier BV]
卷期号:84 (5): 434-446 被引量:10
标识
DOI:10.1016/j.jacc.2024.04.060
摘要

Accurate risk stratification is vital for primary prevention of cardiovascular disease (CVD). However, traditional tools such as the Framingham Risk Score (FRS) may underperform within the diverse intermediate-risk group, which includes individuals requiring distinct management strategies. This study aimed to develop a lipidomic-enhanced risk score (LRS), specifically targeting risk prediction and reclassification within the intermediate group, benchmarked against the FRS. The LRS was developed via a machine learning workflow using ridge regression on the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab; n = 10,339). It was externally validated with the Busselton Health Study (n = 4,492), and its predictive utility for coronary artery calcium scoring (CACS)–based outcomes was independently validated in the BioHEART cohort (n = 994). LRS significantly improved discrimination metrics for the intermediate-risk group in both AusDiab and Busselton Health Study cohorts (all P < 0.001), increasing the area under the curve for CVD events by 0.114 (95% CI: 0.1123-0.1157) and 0.077 (95% CI: 0.0755-0.0785), with a net reclassification improvement of 0.36 (95% CI: 0.21-0.51) and 0.33 (95% CI: 0.15-0.49), respectively. For CACS-based outcomes in BioHEART, LRS achieved a significant area under the curve improvement of 0.02 over the FRS (0.76 vs 0.74; P < 1.0 × 10-5). A simplified, clinically applicable version of LRS was also created that had comparable performance to the original LRS. LRS, augmenting the FRS, presents potential to improve intermediate-risk stratification and to predict atherosclerotic markers using a simple blood test, suitable for clinical application. This could facilitate the triage of individuals for noninvasive imaging such as CACS, fostering precision medicine in CVD prevention and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
meng完成签到,获得积分10
1秒前
乐乐应助陈敏采纳,获得10
4秒前
Junsir完成签到,获得积分10
5秒前
英俊的铭应助万物更始采纳,获得10
6秒前
神勇契完成签到,获得积分20
7秒前
小小果完成签到,获得积分20
8秒前
科研通AI5应助yoyo采纳,获得10
10秒前
11秒前
小郭完成签到,获得积分20
15秒前
小小果发布了新的文献求助10
16秒前
薛厌完成签到,获得积分10
16秒前
爱吃巧乐兹的猹完成签到,获得积分10
17秒前
陈敏发布了新的文献求助10
18秒前
18秒前
niulugai完成签到,获得积分10
19秒前
神勇契发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
虚心千凡发布了新的文献求助10
26秒前
小熊完成签到,获得积分10
26秒前
曹年跃发布了新的文献求助10
27秒前
陈敏完成签到,获得积分10
28秒前
科研通AI5应助zhengmiao采纳,获得10
29秒前
WDD完成签到,获得积分10
30秒前
小熊发布了新的文献求助10
30秒前
31秒前
31秒前
ste56完成签到,获得积分10
32秒前
牟翎完成签到,获得积分10
32秒前
人间草木完成签到,获得积分10
34秒前
ljj301发布了新的文献求助30
36秒前
Suki给Suki的求助进行了留言
36秒前
guilin发布了新的文献求助10
38秒前
曹年跃完成签到,获得积分10
38秒前
40秒前
humorr完成签到,获得积分10
41秒前
爆米花完成签到,获得积分10
42秒前
CipherSage应助xiaolan采纳,获得10
42秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331224
关于积分的说明 10250683
捐赠科研通 3046706
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801055
科研通“疑难数据库(出版商)”最低求助积分说明 759979