消散
结构工程
刚度
打滑(空气动力学)
承载力
接头(建筑物)
方位(导航)
梁(结构)
有限元法
材料科学
磁滞
工程类
计算机科学
物理
航空航天工程
人工智能
热力学
量子力学
作者
Xian Gao,Shaoyuan Lin,Ruyue Liu,Xilong Chen
出处
期刊:Buildings
[MDPI AG]
日期:2024-08-06
卷期号:14 (8): 2424-2424
被引量:2
标识
DOI:10.3390/buildings14082424
摘要
Prefabricated converter station building has been gradually applied in the field of power engineering construction due to the advantages of standardized design, high construction efficiency, and quality control. The beam–column joint is the essential constitutive part to ensure structural integrity and reliable force transmission for the prefabricated structure. In this paper, a novel load bearing-energy dissipation connection is proposed and applied to the beam–column joint to improve seismic performance and seismic resilience. Pseudo-static tests were conducted on the beam–column joint with the load bearing-energy dissipation connection, and the test results demonstrated that the tested beam–column joints developed with similar failure modes, and the damage was concentrated in the load bearing-energy dissipation connection while the beam and column remained elastic. The beam–column joint with the load bearing-energy dissipation connection had stable hysteresis behavior, with favorable bearing capacity and energy dissipation behavior. A shorter slip length and a larger bolt distance could lead to better stress development and enhance the bearing capacity, while the slip length barely affected the ductile behavior. Moreover, a finite element model was established and validated to extend the parametric study to provide a preliminary understanding of the mechanical mechanism of the proposed beam–column joint with the load bearing-energy dissipation connection. It was confirmed that the load–-deformation behavior was greatly affected by the slip length, but the slip length barely affected the initial stiffness. The width of the sliding steel fuse influenced the bearing capacity and the degradation behavior. A wider width could lead to a higher bearing capacity and improve the degradation behavior. Based on the analysis of the stress development and stress distribution corresponding to different feature points, it was concluded that the use of bearing-energy dissipation improved the stress development in the framing components and achieved damage concentration.
科研通智能强力驱动
Strongly Powered by AbleSci AI