Improved Faster-RCNN Algorithm for Traffic Sign Detection

计算机科学 符号(数学) 算法 人工智能 模式识别(心理学) 数学 数学分析
作者
Li Xuejun,Quan Linfei,Yingzhi Zhang,Chenyu Han
标识
DOI:10.59782/sidr.v1i1.30
摘要

This article proposes an improved Faster-RCNN algorithm for detecting small traffic signs, which addresses the issues of poor recognition performance of distant small targets and high computation cost in real-world traffic scenes affected by weather and lighting conditions. Based on the basic architecture of Faster-RCNN, the algorithm reconstructs the backbone network and improves the region proposal network to make the network framework lightweight. A multi-scale feature fusion network is designed by integrating the scSE attention and GSConv modules, and the Anchors box size is updated to improve the localization and recognition of traffic sign targets. The ROI Align pooling operation with bilinear interpolation for each target subregion is used to preserve the detailed features of the target region and improve the ability to capture details of distant targets. The balanced L1 loss function is adopted to address the problem of imbalance between samples with large gradient difficulty and those with small gradient easiness, thus improving the training effect. Experiments were conducted on the expanded TT100K dataset. Results show that compared with traditional Faster-RCNN, the model weight is reduced by 200 MB, and detection accuracy is improved by . The algorithm achieves a detection accuracy of in low-intensity environments such as cloudy days, which helps improve the traffic sign detection performance in extreme environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范嘻嘻完成签到 ,获得积分10
1秒前
Gudeguy完成签到 ,获得积分10
1秒前
故意的山河完成签到,获得积分10
2秒前
shinysparrow应助baixue采纳,获得100
2秒前
yang完成签到,获得积分10
3秒前
zz完成签到,获得积分20
3秒前
天天快乐应助杨yang采纳,获得10
6秒前
8秒前
12秒前
14秒前
17秒前
自觉竺发布了新的文献求助10
19秒前
薇儿发布了新的文献求助10
19秒前
SYLH应助baixue采纳,获得10
23秒前
成就的水之完成签到,获得积分10
23秒前
endeavor发布了新的文献求助10
23秒前
小蘑菇应助薇儿采纳,获得10
25秒前
香蕉觅云应助wwwww采纳,获得10
29秒前
30秒前
新明完成签到,获得积分10
31秒前
852应助xdlongchem采纳,获得10
31秒前
自觉竺完成签到,获得积分10
33秒前
可耐的秋莲完成签到,获得积分10
34秒前
35秒前
时来运转完成签到 ,获得积分10
36秒前
36秒前
36秒前
橡皮鱼完成签到,获得积分10
36秒前
涵de暴躁小地雷完成签到 ,获得积分10
37秒前
小乐发布了新的文献求助10
37秒前
粤利粤完成签到,获得积分10
38秒前
梦白鸽发布了新的文献求助10
38秒前
39秒前
Ava应助BY采纳,获得10
39秒前
wwwww发布了新的文献求助10
40秒前
41秒前
Owen应助yiyi采纳,获得10
42秒前
莲枳榴莲完成签到,获得积分10
42秒前
适不适关注了科研通微信公众号
42秒前
努力追赶的科研人完成签到 ,获得积分10
43秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841977
求助须知:如何正确求助?哪些是违规求助? 3384000
关于积分的说明 10532144
捐赠科研通 3104257
什么是DOI,文献DOI怎么找? 1709550
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878