Artificial Intelligence Text Processing Using Retrieval-Augmented Generation: Applications in Business and Education Fields

计算机科学 可解释性 人工智能 领域(数学) 光学(聚焦) 自然语言处理 分析 深度学习 答疑 增强现实 情报检索 数据科学 数学 纯数学 物理 光学
作者
Bogdan-Ștefan Posedaru,Florin-Valeriu Pantelimon,Mihai-Nicolae Dulgheru,Tiberiu-Marian Georgescu
出处
期刊:Proceedings of the ... International Conference on Business Excellence 卷期号:18 (1): 209-222 被引量:2
标识
DOI:10.2478/picbe-2024-0018
摘要

Abstract The article studies the current text processing tools based on Artificial Intelligence. A literature review is done emphasizing the dynamic evolution of AI-powered text analytics, having as its central tool ChatGPT and its capabilities. The focus is centered on the techniques and methods that are using embeddings in order to improve large language models (LLMs). In this paper is analyzed the current situation of the literature in terms of text processing using Retrieval-Augmented Generation and is highlighted the potential of this technology to enhance the interpretability and trust in applications critical, such as those related to education or business. AI has revolutionized natural language processing (NLP), which facilitated the machines to interpret and generate text efficiently and accurately. In addition, large language models with external knowledge bases have been developed. These are used to produce more accurate and contextually relevant text responses. This approach is called Retrieval-Augmented Generation (RAG is one of the most significant recent advancements in this field. Based on our study, two use cases are implemented to show the applicability of our study: one related to education and one related to business IT-related documents. The methodology describes the techniques used. This includes retrieval-augmented generation and embedding stored using vector databases. Our custom models are evaluated by comparing them to the general ones, without embeddings, showing superior performance. The article highlights remarkable progress in Retrieval-Augmented Generation (RAG), which is used for AI text processing with a focus on business and education fields. Further in this paper, many of the most significant highlights are presented, which include a scalable framework for AI applications, a new integration of Retrieval-Augmented Generation and embeddings, practical application demonstrations, bridging gaps in the analysis op AI text, significant development in AI performance and optimizing educational and business processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负数发布了新的文献求助10
刚刚
聪明的灵寒完成签到 ,获得积分10
2秒前
5秒前
Cat完成签到,获得积分0
5秒前
TheDing完成签到,获得积分10
5秒前
6秒前
6秒前
强健的冰旋完成签到,获得积分10
6秒前
Davey1220完成签到,获得积分10
8秒前
10秒前
丁丁发布了新的文献求助10
11秒前
11秒前
冰魂应助科研通管家采纳,获得10
12秒前
cdercder应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
wangqinlei完成签到 ,获得积分10
13秒前
zj完成签到,获得积分10
14秒前
谢陈完成签到 ,获得积分10
14秒前
等待的航空完成签到 ,获得积分10
19秒前
淳于易形完成签到,获得积分10
21秒前
vivre223完成签到,获得积分10
22秒前
冬月完成签到 ,获得积分10
23秒前
健壮的凝冬完成签到 ,获得积分10
24秒前
wcy完成签到 ,获得积分10
24秒前
LS完成签到,获得积分10
24秒前
ZXneuro完成签到,获得积分10
24秒前
英俊的丹亦完成签到,获得积分10
26秒前
hope完成签到,获得积分10
26秒前
28秒前
科研通AI5应助cs采纳,获得10
30秒前
圆子完成签到 ,获得积分10
31秒前
繁荣的语蝶完成签到 ,获得积分10
32秒前
33秒前
大虫子完成签到,获得积分10
34秒前
独特的凝云完成签到 ,获得积分10
35秒前
cs发布了新的文献求助10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776082
求助须知:如何正确求助?哪些是违规求助? 3321667
关于积分的说明 10206556
捐赠科研通 3036733
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841