A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior

水准点(测量) 元启发式 测试套件 计算机科学 一套 算法 优化测试函数 过程(计算) 数学优化 MATLAB语言 最优化问题 人工智能 测试用例 机器学习 数学 多群优化 回归分析 大地测量学 考古 历史 操作系统 地理
作者
Pavel Trojovský,Mohammad Dehghani
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:119
标识
DOI:10.1038/s41598-023-35863-5
摘要

This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
鸣笛应助科研通管家采纳,获得20
刚刚
刚刚
香蕉觅云应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
1秒前
顾矜应助zhangting采纳,获得10
1秒前
1秒前
情怀应助liuliu采纳,获得10
2秒前
3秒前
4秒前
Jimmy发布了新的文献求助10
5秒前
5秒前
6秒前
JZ1640发布了新的文献求助20
6秒前
稳重奇异果应助Kvolu29采纳,获得30
7秒前
猴哥666发布了新的文献求助10
7秒前
无辜乘云发布了新的文献求助10
8秒前
8秒前
8秒前
可爱的函函应助wxbroute采纳,获得10
9秒前
追风舞尘发布了新的文献求助30
9秒前
lihua发布了新的文献求助10
9秒前
热沙来提发布了新的文献求助10
9秒前
谢佳冀发布了新的文献求助10
10秒前
王川完成签到,获得积分10
10秒前
10秒前
偷得浮生半日闲完成签到,获得积分10
11秒前
夏侯幻梦发布了新的文献求助10
11秒前
李爱国应助HOHO采纳,获得10
12秒前
超级宝马完成签到,获得积分10
13秒前
13秒前
zyc完成签到,获得积分10
14秒前
慕青应助林建峰采纳,获得10
15秒前
15秒前
正在检索完成签到,获得积分10
16秒前
直率的鸿完成签到,获得积分10
17秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896855
求助须知:如何正确求助?哪些是违规求助? 3440653
关于积分的说明 10818317
捐赠科研通 3165678
什么是DOI,文献DOI怎么找? 1748889
邀请新用户注册赠送积分活动 845021
科研通“疑难数据库(出版商)”最低求助积分说明 788392