亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using LLMs to bring evidence-based feedback into the classroom: AI-generated feedback increases secondary students’ text revision, motivation, and positive emotions

心理学 正面反馈 社会心理学 数学教育 工程类 电气工程
作者
Jennifer Meyer,Thorben Jansen,Ronja Schiller,Lucas W. Liebenow,Marlene Steinbach,Andrea Horbach,Johanna Fleckenstein
出处
期刊:Computers & Education: Artificial Intelligence [Elsevier]
卷期号:6: 100199-100199 被引量:66
标识
DOI:10.1016/j.caeai.2023.100199
摘要

Writing proficiency is an essential skill for upper secondary students that can be enhanced through effective feedback. Creating feedback on writing tasks, however, is time-intensive and presents a challenge for educators, often resulting in students receiving insufficient or no feedback. The advent of text-generating large language models (LLMs) offers a promising solution, namely, automated evidence-based feedback generation. Yet, empirical evidence from randomized controlled studies about the effectiveness of LLM-generated feedback is missing. To address this issue, the current study compared the effectiveness of LLM-generated feedback to no feedback. A sample of N = 459 upper secondary students of English as a foreign language wrote an argumentative essay. Students in the experimental group were asked to revise their text according to feedback that was generated using the LLM GPT-3.5-turbo. The control group revised their essays without receiving feedback. We assessed improvement in the revision using automated essay scoring. The results showed that LLM-generated feedback increased revision performance (d = .19) and task motivation (d = 0.36). Moreover, it increased positive emotions (d = 0.34) compared to revising without feedback. The findings highlight that using LLMs allows to create timely feedback that can positively relate to students' cognitive and affective-motivational outcomes. Future perspectives and the implications for research and practice of using LLM-generated feedback in intelligent tutoring systems are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
去码头整点薯条完成签到,获得积分10
27秒前
徐per爱豆完成签到 ,获得积分10
39秒前
caca完成签到,获得积分0
53秒前
1分钟前
ADcal完成签到 ,获得积分10
1分钟前
1分钟前
badabadaba关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
badabadaba发布了新的文献求助30
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
金沐栋发布了新的文献求助10
2分钟前
2分钟前
濮阳灵竹完成签到,获得积分10
2分钟前
魏欣娜发布了新的文献求助10
2分钟前
左左曦完成签到,获得积分10
2分钟前
123发布了新的文献求助10
2分钟前
魏欣娜发布了新的文献求助10
3分钟前
隐形曼青应助我爱吹小牛采纳,获得10
3分钟前
Amelia完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
ding应助百里幻竹采纳,获得10
3分钟前
追寻夜香完成签到 ,获得积分10
3分钟前
脑洞疼应助魏欣娜采纳,获得10
4分钟前
顾矜应助一碗小米饭采纳,获得10
4分钟前
lucky发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
百里幻竹发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
百里幻竹发布了新的文献求助10
4分钟前
NOTHING完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505863
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456499
关于科研通互助平台的介绍 1430174