亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multimodal grammar of artificial intelligence: Measuring the gains and losses in generative AI

生成语法 计算机科学 人工智能 意义(存在) 自然语言处理 生成模型 语法 语言学 心理学 哲学 心理治疗师
作者
Bill Cope,Mary Kalantzis
出处
期刊:Multimodality & society [SAGE]
卷期号:4 (2): 123-152 被引量:30
标识
DOI:10.1177/26349795231221699
摘要

This paper analyzes the scope of Artificial Intelligence (AI) from the perspective of a multimodal grammar. Its focal point is Generative AI, a technology that puts so-called Large Language Models to work. The first part of the paper analyzes Generative AI, based as it is on the statistical probability of one token (a word or part of a word) following another. If the relation of tokens is meaningful, this is circumstantial and no more, because its mechanisms of statistical analysis eschew any theory of meaning. This is the case not only for the written text that Generative AI leverages, but by extension image and multimodal forms of meaning that it can generate. The AI can only work with non-textual forms of meaning after applying language labels, and to that extent is captive not only to the limits of probabilistic statistics but the limits of written language as well. While acknowledging gains arising from the brute statistical power of Generative AI, in its second part the paper goes on to map what is lost in its statistical and text-bound approaches to multimodal meaning-making. Our measure of these gains and losses is guided by the concept of grammar, defined here as a theory of the elemental patterns of meaning in the world—not just written text and speech, but also image, space, object, body, and sound. Ironically, a good deal of what is lost by Generative AI is computable. The third and final part of the paper briefly discusses educational applications of Generative AI. Given both its power and intrinsic limitations, we have been experimenting with the application of Generative AI in educational settings and the ways it might be put to pedagogical use. How does a grammatical analysis help us to identify the scope of worthwhile application? Finally, if more of human experience is computable than can be captured in text-bound AI, how might it be possible at the level of code to create a synthesis in which grammatical and multimodal approaches complement Generative AI?
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小zz完成签到 ,获得积分10
刚刚
8秒前
13秒前
13秒前
liang发布了新的文献求助10
17秒前
情怀应助liang采纳,获得10
28秒前
Kevin完成签到,获得积分10
33秒前
38秒前
无心烛发布了新的文献求助30
42秒前
Fortune完成签到,获得积分10
44秒前
1分钟前
走啊走应助科研通管家采纳,获得10
1分钟前
走啊走应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI5应助无心烛采纳,获得10
1分钟前
2分钟前
无心烛发布了新的文献求助10
2分钟前
2分钟前
liang发布了新的文献求助10
2分钟前
2分钟前
所所应助liang采纳,获得10
2分钟前
Beth完成签到,获得积分10
2分钟前
无心烛发布了新的文献求助10
3分钟前
走啊走应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
仓颉发布了新的文献求助10
3分钟前
SciGPT应助仓颉采纳,获得10
3分钟前
4分钟前
科目三应助无心烛采纳,获得30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
无心烛发布了新的文献求助30
4分钟前
4分钟前
香蕉觅云应助科研通管家采纳,获得50
5分钟前
5分钟前
无心烛发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5161530
求助须知:如何正确求助?哪些是违规求助? 4355002
关于积分的说明 13559124
捐赠科研通 4199716
什么是DOI,文献DOI怎么找? 2303266
邀请新用户注册赠送积分活动 1303253
关于科研通互助平台的介绍 1249101