A universal multifunctional rare earth oxide coating strategy to stabilize high-nickel lithium layered oxide cathode

材料科学 阴极 X射线光电子能谱 锂(药物) 电解质 涂层 化学工程 氧化物 扫描电子显微镜 介电谱 电化学 锂电池 冶金 复合材料 化学 离子 电极 离子键合 有机化学 医学 物理化学 工程类 内分泌学
作者
Duo Wang,Haonan Jiang,Ming Feng,Limin Wang,Dongming Yin,Yong Cheng
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:976: 173364-173364 被引量:9
标识
DOI:10.1016/j.jallcom.2023.173364
摘要

LiNi0.8Co0.1Mn0.1O2 (NCM811) high-nickel lithium layered oxide material has gained recognition as a promising cathode material for lithium-ion batteries (LIBs) due to its relatively high output capacity. However, the presence of high nickel content leads to capacity fading resulting from surface residue lithium and cathode-electrolyte interfacial side reactions, posing a significant threat to the cycle life for battery. In this study, we have developed an ultrathin and uniform CeO2&LiCeO2 nanoscale rare earth composite functional coating in-situ for NCM811 cathode, utilizing residual lithium and rare earth oxide. Ex-situ scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectrometer (XPS) analyses confirm the reduction in interfacial side reactions, leading to improved stability at the cathode-electrolyte interface. This improvement can be attributed to the removal of surface residual lithium and the formation of stable CeO2&LiCeO2 functional coatings. As a result, the NCM811 modified with the rare earth composite functional coating exhibits a higher capacity retention rate after 100 cycles (90.9% vs. 86.1%) and enhanced rate capacity (136 mAh g−1 vs. 117 mAh g−1) at 5 C than the NCM811. Even the designed full battery achieves an energy density as high as 253 Wh kg−1. This work presents an innovative approach to utilize residual lithium and rare earth oxide for in-situ functional coating formation, ultimately enhancing the lithium storage performance of high-nickel NCM811 cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘿嘿嘿发布了新的文献求助10
刚刚
wanci应助科研通管家采纳,获得10
1秒前
Lucas应助Lumos采纳,获得10
1秒前
区区应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
dian应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
june发布了新的文献求助10
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
3秒前
Behappy发布了新的文献求助10
3秒前
靎藥发布了新的文献求助20
4秒前
析木完成签到,获得积分10
4秒前
谨慎语梦发布了新的文献求助10
4秒前
5秒前
思源应助aaa采纳,获得10
5秒前
罗大侠发布了新的文献求助10
5秒前
lgold完成签到,获得积分10
6秒前
析木发布了新的文献求助10
7秒前
Ouou发布了新的文献求助10
7秒前
在水一方应助june采纳,获得10
10秒前
10秒前
卡奇Mikey完成签到,获得积分10
13秒前
Hello应助天羽ty采纳,获得10
13秒前
15秒前
Autaro完成签到,获得积分10
15秒前
15秒前
完美世界应助Timo干物类采纳,获得10
16秒前
茄子发布了新的文献求助10
16秒前
暖暖的禾日完成签到,获得积分10
17秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194677
求助须知:如何正确求助?哪些是违规求助? 4376939
关于积分的说明 13630885
捐赠科研通 4232153
什么是DOI,文献DOI怎么找? 2321393
邀请新用户注册赠送积分活动 1319546
关于科研通互助平台的介绍 1269917