已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Defect imaging and identification in asphalt materials using coplanar capacitance sensors with single-pair electrodes

主成分分析 沥青 鉴定(生物学) 电容层析成像 电容 投影(关系代数) 计算机科学 人工智能 卡尔曼滤波器 材料科学 大津法 算法 计算机视觉 模式识别(心理学) 电极 分割 复合材料 图像分割 物理化学 化学 生物 植物
作者
Bin Shi,Qiao Dong,Xueqin Chen,Xiang Wang,Yao Kang,Shiao Yan,Xiaozhi Hu
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:412: 134853-134853
标识
DOI:10.1016/j.conbuildmat.2023.134853
摘要

Coplanar capacitance imaging technology (CCIT) is a non-destructive method with intuitive and accurate identification. This paper aims to realize defect identification in asphalt materials based on the CCIT using coplanar single-pair electrode capacitance sensor (CSCS). Firstly, the Linear Back Projection (LBP) algorithm, the Landweber algorithm, and the Kalman-Filter (KF) algorithm, are compared and evaluated. Then, the principal component analysis (PCA) method is utilized to fuse the reconstructed images. In addition, the OTSU method, the iterative threshold (IT) method, and the genetic algorithm (OA) method, is compared and utilized to quantify the defective region. Finally, this investigation analyzes the reconstructed and segmented images of defects in asphalt materials. It is concluded that the KL algorithm is the most suitable algorithm to reconstruct the defective images. The PCA method improve the quality of the reconstructed defective images. The defective region is determined by the OTSU method, which is the most approximate imaging segment method. It is found that the CCIT can detect the invisible defect depth in asphalt materials. The different defect mediums in various asphalt materials can be identified by the CCIT. The segmented defective region error in asphalt materials is less than 13%, demonstrating that the CCIT is effective for the identification of defect shape details in asphalt materials. The segmented imaging precision of square defects in asphalt materials is the highest; circular defects are the next lowest; and triangular defects are the lowest. The outcomes of this research can assist engineers in realizing intuitive and high-accuracy identification of various invisible defects in shallow asphalt layers in bridge deck asphalt pavement utilizing the CCIT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
最牛的kangkang完成签到 ,获得积分10
2秒前
Melo完成签到,获得积分10
3秒前
阿黎发布了新的文献求助10
8秒前
Qi完成签到 ,获得积分10
11秒前
上官若男应助Zoey采纳,获得10
12秒前
12秒前
14秒前
14秒前
16秒前
bronyajump发布了新的文献求助10
17秒前
20秒前
yingying发布了新的文献求助10
24秒前
chen完成签到 ,获得积分10
24秒前
26秒前
30秒前
重要雁梅发布了新的文献求助10
31秒前
lizhiqian2024发布了新的文献求助10
33秒前
35秒前
AMENG完成签到,获得积分10
36秒前
Orange应助lizhiqian2024采纳,获得10
40秒前
40秒前
打打应助tylscience采纳,获得10
41秒前
43秒前
九思发布了新的文献求助10
46秒前
50秒前
SCI完成签到,获得积分10
51秒前
Lillllll完成签到,获得积分10
52秒前
tylscience发布了新的文献求助10
53秒前
54秒前
传奇3应助刘燕采纳,获得10
56秒前
小西完成签到 ,获得积分10
56秒前
小狼完成签到,获得积分10
57秒前
Fin2046发布了新的文献求助10
59秒前
tylscience完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大个应助科研通管家采纳,获得30
1分钟前
机灵柚子应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795430
求助须知:如何正确求助?哪些是违规求助? 3340416
关于积分的说明 10300140
捐赠科研通 3056953
什么是DOI,文献DOI怎么找? 1677332
邀请新用户注册赠送积分活动 805375
科研通“疑难数据库(出版商)”最低求助积分说明 762491