Effect of Temperature on the Nanoindentation Behavior of Monocrystalline Silicon by Molecular Dynamics Simulations

单晶硅 纳米压痕 材料科学 分子动力学 动力学(音乐) 纳米技术 工程物理 复合材料 光电子学 化学 计算化学 工程类 物理 声学
作者
Zhijie Zhang,Zhenqiao Zhang,Dan Zhao,Yihan Niu,Dingnan Bai,Yingying Wang,Mingkai Song,Jiucheng Zhao,Shunbo Wang,Bo Zhu,Hongwei Zhao
标识
DOI:10.2139/ssrn.4738841
摘要

Under external loads, monocrystalline silicon experiences intricate phase transformations that can profoundly impact its performance and processing behavior. A comprehensive analysis of deformation behavior and principles of silicon (Si) is crucial for its processing and applications. In this study, molecular dynamics (MD) simulations are performed within the range of 1 to 900 K, to investigate the influence of temperature on the mechanical properties and deformation behavior of monocrystalline silicon during nanoindentation. The findings reveal a decline in the hardness and elastic modulus of monocrystalline silicon with increasing temperature. At lower temperature, the activation of plastic deformation within the sample is delayed. The subsequent sudden release of stored elastic energy manifests as a pop-in event on the P-h curve. This forms a quadruple symmetric phase transformation region mainly consisting of Si-II, bct-5, and Si-XIII, where Si-XIII and bct-5 phases are interspersed around the Si-II phase. As the temperature increases, plastic deformation in the sample activates earlier. In the subsequent loading process, higher temperature expedites the formation and transformation of Si-XIII. During the unloading process, higher temperature diminishes the stability of the bct-5. At high temperature, dislocation-induced deformation occurs in the sample, and a new phase caused by dislocation is extracted. Furthermore, the structural deformation of monocrystalline silicon shows anisotropy, and the phase transformation process exhibits dependence on crystal orientation. This research offers a novel understanding of the deformation behavior and phase transformation mechanisms of monocrystalline silicon, providing valuable theoretical support for both the manufacturing and application of monocrystalline silicon products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cun完成签到,获得积分10
刚刚
风清扬应助畅快白薇采纳,获得10
刚刚
1秒前
幼稚园大王完成签到,获得积分10
1秒前
Ava应助清爽访曼采纳,获得10
1秒前
1秒前
尉迟仰完成签到,获得积分20
2秒前
2秒前
姜菡发布了新的文献求助10
3秒前
Jasper应助ao采纳,获得10
3秒前
小杜小杜发布了新的文献求助10
3秒前
浮游应助YYY采纳,获得10
4秒前
完美世界应助浮晨采纳,获得10
4秒前
183496358完成签到,获得积分20
4秒前
4秒前
黄玉完成签到,获得积分10
4秒前
晓晓发布了新的文献求助10
5秒前
冯家源发布了新的文献求助10
5秒前
一只小西瓜完成签到,获得积分10
5秒前
5秒前
2799发布了新的文献求助10
6秒前
cj给cj的求助进行了留言
6秒前
shilong.yang发布了新的文献求助10
6秒前
6秒前
7秒前
hh完成签到,获得积分10
7秒前
王驰发布了新的文献求助10
8秒前
fangze完成签到,获得积分10
8秒前
8秒前
nadeem完成签到 ,获得积分10
8秒前
8秒前
copper完成签到,获得积分10
9秒前
9秒前
852应助JiaY采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
哇哇哇哇我完成签到,获得积分10
10秒前
10秒前
fangze发布了新的文献求助10
10秒前
快乐顽童完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664