Evaluating data-driven and hybrid modeling of terrestrial actual evapotranspiration based on an automatic machine learning approach

蒸散量 均方误差 可预测性 预测建模 统计 计算机科学 数学 机器学习 生态学 生物
作者
Ning Guo,Hao Chen,Qiong Han,Tiejun Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:628: 130594-130594 被引量:11
标识
DOI:10.1016/j.jhydrol.2023.130594
摘要

The performances of physics-based, data-driven, and hybrid models for estimating terrestrial actual evapotranspiration (ETa) is currently under debate, which requires thorough evaluations of those models particularly with recent developments in automatic machine learning (AML) techniques. In this study, six AML-based models were first constructed using the H2O-AML platform, from which an optimal (AML-OP) model was selected for estimating daily ETa at ecosystem scales. In addition, hybrid models were developed by combining the six AML models with surface conductance (Gs) inverted from the Penman-Monteith equation and an optimal (PM-OP) model was also selected. With 15 predictor variables as model inputs that were compiled from various data sources, the performances of those models for estimating daily ETa were evaluated using observed data from the FLUXNET2015 dataset. The results revealed that no models showed consistently low noise levels across different ecosystem types, making it necessary to use AML techniques for selecting ecosystem-specific models. Interestingly, the AML-OP models (root mean square error (RMSE) and symmetric mean absolute percentage error (SMAPE) were 0.16–0.31 mm d-1 and 9 %–36 % respectively) showed slightly better predictive results than the PM-OP models (RMSE and SMAPE were 0.23–0.36 mm d-1 and 15 %–68 % respectively), likely owing to model parameter uncertainties and tight constraints of physical models on application condition. Secondly, as ETa nonlinearly responds to environmental variables, model predictability under extreme weather (drought and heatwave) conditions was examined. The results showed that the prediction of the AML-OP and PM-OP models expectedly worsened (RMSE and SMAPE increased by 0.06–0.77 mm d-1 and −19 % to 79 %, respectively); however, the AML-OP model still outperformed the PM-OP model in most ecosystems, further underscoring the need to understand ETa regulation mechanisms under varying climatic conditions. Finally, the PM-OP models developed here provided better daily ETa estimates compared to other recently proposed hybrid models (RMSE reduced by 0.98–1.80 mm d-1). Both models can be better applied to wetlands that have been less frequently evaluated previously (RMSE reduction of 0.22 mm d-1 and 0.18 mm d-1 for the AML-OP and PM-OP models).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊呜发布了新的文献求助10
刚刚
yyd发布了新的文献求助10
1秒前
颜如南完成签到,获得积分10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
传奇3应助王圈采纳,获得10
2秒前
2秒前
ttaod完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
3秒前
Hzeros发布了新的文献求助10
3秒前
3秒前
3秒前
山复尔尔发布了新的文献求助10
3秒前
keyan应助贪玩的秋翠采纳,获得10
3秒前
moral发布了新的文献求助10
3秒前
3秒前
18746005898发布了新的文献求助10
4秒前
4秒前
4秒前
高山仰止发布了新的文献求助10
5秒前
深情安青应助yugao采纳,获得10
5秒前
5秒前
ForZero发布了新的文献求助10
5秒前
5秒前
5秒前
辣椒油完成签到,获得积分10
5秒前
完美誉发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512879
求助须知:如何正确求助?哪些是违规求助? 4607280
关于积分的说明 14504084
捐赠科研通 4542710
什么是DOI,文献DOI怎么找? 2489172
邀请新用户注册赠送积分活动 1471230
关于科研通互助平台的介绍 1443251