亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluating data-driven and hybrid modeling of terrestrial actual evapotranspiration based on an automatic machine learning approach

蒸散量 均方误差 可预测性 预测建模 统计 计算机科学 数学 机器学习 生态学 生物
作者
Ning Guo,Hao Chen,Qiong Han,Tiejun Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:628: 130594-130594 被引量:11
标识
DOI:10.1016/j.jhydrol.2023.130594
摘要

The performances of physics-based, data-driven, and hybrid models for estimating terrestrial actual evapotranspiration (ETa) is currently under debate, which requires thorough evaluations of those models particularly with recent developments in automatic machine learning (AML) techniques. In this study, six AML-based models were first constructed using the H2O-AML platform, from which an optimal (AML-OP) model was selected for estimating daily ETa at ecosystem scales. In addition, hybrid models were developed by combining the six AML models with surface conductance (Gs) inverted from the Penman-Monteith equation and an optimal (PM-OP) model was also selected. With 15 predictor variables as model inputs that were compiled from various data sources, the performances of those models for estimating daily ETa were evaluated using observed data from the FLUXNET2015 dataset. The results revealed that no models showed consistently low noise levels across different ecosystem types, making it necessary to use AML techniques for selecting ecosystem-specific models. Interestingly, the AML-OP models (root mean square error (RMSE) and symmetric mean absolute percentage error (SMAPE) were 0.16–0.31 mm d-1 and 9 %–36 % respectively) showed slightly better predictive results than the PM-OP models (RMSE and SMAPE were 0.23–0.36 mm d-1 and 15 %–68 % respectively), likely owing to model parameter uncertainties and tight constraints of physical models on application condition. Secondly, as ETa nonlinearly responds to environmental variables, model predictability under extreme weather (drought and heatwave) conditions was examined. The results showed that the prediction of the AML-OP and PM-OP models expectedly worsened (RMSE and SMAPE increased by 0.06–0.77 mm d-1 and −19 % to 79 %, respectively); however, the AML-OP model still outperformed the PM-OP model in most ecosystems, further underscoring the need to understand ETa regulation mechanisms under varying climatic conditions. Finally, the PM-OP models developed here provided better daily ETa estimates compared to other recently proposed hybrid models (RMSE reduced by 0.98–1.80 mm d-1). Both models can be better applied to wetlands that have been less frequently evaluated previously (RMSE reduction of 0.22 mm d-1 and 0.18 mm d-1 for the AML-OP and PM-OP models).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Zyc采纳,获得10
1秒前
weii发布了新的文献求助10
2秒前
坦率珍发布了新的文献求助10
4秒前
11秒前
在水一方应助weii采纳,获得10
12秒前
Zyc发布了新的文献求助10
16秒前
18秒前
ianlaikk发布了新的文献求助10
23秒前
ding应助dajiejie采纳,获得10
33秒前
情怀应助科研通管家采纳,获得30
51秒前
Lucas应助科研通管家采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
51秒前
典希子完成签到 ,获得积分10
52秒前
传奇3应助Zyc采纳,获得10
1分钟前
汉堡包应助xl采纳,获得10
1分钟前
Mika发布了新的文献求助20
1分钟前
光合作用完成签到,获得积分10
1分钟前
爱科研的小凡完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
Orange应助儒雅的城采纳,获得20
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
Zyc发布了新的文献求助10
2分钟前
zgjc发布了新的文献求助10
2分钟前
2分钟前
2分钟前
xl完成签到,获得积分10
2分钟前
柳叶刀Z完成签到 ,获得积分10
2分钟前
Tushar发布了新的文献求助10
2分钟前
气球好饿完成签到 ,获得积分10
2分钟前
xl发布了新的文献求助10
2分钟前
2分钟前
XMH完成签到,获得积分20
2分钟前
2分钟前
wswswsws完成签到,获得积分10
2分钟前
XMH发布了新的文献求助10
2分钟前
Tushar完成签到,获得积分10
2分钟前
吃点红糖馒头完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323651
求助须知:如何正确求助?哪些是违规求助? 4464878
关于积分的说明 13893694
捐赠科研通 4356431
什么是DOI,文献DOI怎么找? 2392828
邀请新用户注册赠送积分活动 1386336
关于科研通互助平台的介绍 1356405