Achieving Efficient Feature Representation for Modulation Signal: A Cooperative Contrast Learning Approach

计算机科学 特征(语言学) 特征学习 模式识别(心理学) 人工智能 代表(政治) 特征向量 信号(编程语言) 调制(音乐) 机器学习 哲学 语言学 政治 政治学 法学 程序设计语言 美学
作者
Jing Bai,Xu Wang,Zhu Xiao,Huaji Zhou,Talal Ahmed Ali Ali,You Li,Licheng Jiao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (9): 16196-16211 被引量:4
标识
DOI:10.1109/jiot.2024.3350927
摘要

Seamless Internet of Things (IoT) connections expose many vulnerabilities in wireless networks, and IoT devices inevitably face many malicious active attacks. automatic modulation recognition (AMR) is an effective way to combat IoT physical layer threats. In the field of noncollaborative communication, feature representation learning for unlabeled signals is an important task of AMR. However, due to the unavailability of a priori knowledge and the influence of interference during signal transmission, the intercepted unlabeled signals are difficult to perform efficient feature representation. In this article, we propose cooperative contrast learning for unlabeled modulation signal Cooperative Contrast Learning for modulation Signals (CoCL-Sig). Specifically, the CoCL-Sig is trained using both sequence and constellation diagram modalities, and is divided into two parts: 1) modal-level feature representation and 2) instance-level auxiliary feature representation. In modal-level feature representation, two modal projections are matched in the same hyperplane space. To ensure the stability of the feature representation, a sequence auxiliary branch is added to form an instance-level feature representation of the sequence. In addition, the feature representations obtained by the CoCL-Sig can be applied to modulation signals for semi-supervised classification and clustering tasks. We have conducted extensive experiments on two widely used modulation signal data sets, RML2016.10A and RML2016.04C. The results demonstrate the effectiveness of our method in modulation signal feature representation and its superiority compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
xlxlxl完成签到,获得积分10
1秒前
1秒前
2秒前
仚屳发布了新的文献求助10
2秒前
JianminLuo完成签到 ,获得积分10
2秒前
勤奋隶发布了新的文献求助10
3秒前
4秒前
头与木完成签到,获得积分10
4秒前
4秒前
Hello应助小六采纳,获得10
5秒前
5秒前
5秒前
在水一方应助fff采纳,获得10
5秒前
依亦然发布了新的文献求助10
7秒前
芒go发布了新的文献求助10
7秒前
科研通AI5应助LGJ采纳,获得10
8秒前
9秒前
蟹蟹发布了新的文献求助10
10秒前
kangkang发布了新的文献求助10
10秒前
hanmanman完成签到,获得积分10
11秒前
11秒前
慕青应助甜蜜的映冬采纳,获得10
11秒前
小蘑菇应助默默的馒头采纳,获得10
11秒前
烤肠发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
15秒前
bkagyin应助zjq采纳,获得10
15秒前
16秒前
音乐起完成签到,获得积分10
16秒前
烟花应助小龙虾采纳,获得10
16秒前
科研通AI5应助Raul采纳,获得10
17秒前
汉堡包应助玩命的谷槐采纳,获得10
17秒前
17秒前
蟹蟹完成签到,获得积分10
17秒前
小六发布了新的文献求助10
18秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821827
求助须知:如何正确求助?哪些是违规求助? 3364366
关于积分的说明 10429249
捐赠科研通 3082984
什么是DOI,文献DOI怎么找? 1695936
邀请新用户注册赠送积分活动 815413
科研通“疑难数据库(出版商)”最低求助积分说明 769145