Dynamic risk assessment for underground gas storage facilities based on Bayesian network

贝叶斯网络 故障树分析 可靠性工程 过程(计算) 工程类 工艺安全 计算机科学 数据挖掘 在制品 机器学习 运营管理 操作系统
作者
Qing Xu,Hao Líu,Zhenhua Song,Dong Su,Laibin Zhang,Xuliang Zhang
出处
期刊:Journal of Loss Prevention in The Process Industries [Elsevier BV]
卷期号:82: 104961-104961 被引量:12
标识
DOI:10.1016/j.jlp.2022.104961
摘要

Loss of the underground gas storage process can have significant effects, and risk analysis is critical for maintaining the integrity of the underground gas storage process and reducing potential accidents. This paper focuses on the dynamic risk assessment method for the underground gas storage process. First, the underground gas storage process data is combined to create a database, and the fault tree of the underground gas storage facility is built by identifying the risk factors of the underground gas storage facility and mapping them into a Bayesian network. To eliminate the subjectivity in the process of determining the failure probability level of basic events, fuzzy numbers are introduced to determine the prior probability of the Bayesian network. Then, causal and diagnostic reasoning is performed on the Bayesian network to determine the failure level of the underground gas storage facilities. Based on the rate of change of prior and posterior probabilities, sensitivity and impact analysis are combined to determine the significant risk factors and possible failure paths. In addition, the time factor is introduced to build a dynamic Bayesian network to perform dynamic assessment and analysis of underground gas storage facilities. Finally, the dynamic risk assessment method is applied to underground gas storage facilities in depleted oil and gas reservoirs. A dynamic risk evaluation model for underground gas storage facilities is built to simulate and validate the dynamic risk evaluation method based on the Bayesian network. The results show that the proposed method has practical value for improving underground gas storage process safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈晗予完成签到,获得积分10
1秒前
1秒前
义气如萱发布了新的文献求助10
1秒前
凌寒233完成签到 ,获得积分10
1秒前
Www完成签到 ,获得积分10
2秒前
ss完成签到,获得积分10
2秒前
怡然剑成完成签到 ,获得积分10
2秒前
lgf完成签到,获得积分10
2秒前
Ava应助qqa采纳,获得10
2秒前
科研通AI5应助xiongyue采纳,获得10
3秒前
xuyi完成签到,获得积分10
3秒前
kuku完成签到,获得积分10
3秒前
匪石发布了新的文献求助10
4秒前
慕青应助幸福的依瑶采纳,获得10
4秒前
4秒前
wanci应助企鹅采纳,获得10
4秒前
lucy发布了新的文献求助10
5秒前
jialin完成签到,获得积分10
5秒前
沈达发布了新的文献求助30
5秒前
5秒前
谢志超完成签到,获得积分10
6秒前
rosestar发布了新的文献求助10
6秒前
6秒前
joker_k完成签到,获得积分10
7秒前
jacky完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
高逸涵关注了科研通微信公众号
9秒前
天衍四九完成签到,获得积分10
9秒前
pu完成签到,获得积分20
9秒前
旭a完成签到,获得积分10
9秒前
泥跌来咯完成签到,获得积分10
10秒前
10秒前
Singularity应助森归湖遇鹿采纳,获得10
10秒前
今后应助义气如萱采纳,获得10
10秒前
Www关注了科研通微信公众号
10秒前
玉尘发布了新的文献求助30
11秒前
施宇宙完成签到,获得积分10
11秒前
jixuchance完成签到,获得积分10
11秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788836
求助须知:如何正确求助?哪些是违规求助? 3334022
关于积分的说明 10266605
捐赠科研通 3050176
什么是DOI,文献DOI怎么找? 1673928
邀请新用户注册赠送积分活动 802296
科研通“疑难数据库(出版商)”最低求助积分说明 760560