Two-dimensional Convolutional Neural Network Using Quantitative US for Noninvasive Assessment of Hepatic Steatosis in NAFLD

脂肪变性 医学 非酒精性脂肪肝 脂肪肝 接收机工作特性 核医学 卷积神经网络 放射科 内科学 人工智能 疾病 计算机科学
作者
Sun Kyung Jeon,Jeong Min Lee,Ijin Joo,Jeong Hee Yoon,Gunwoo Lee
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (1) 被引量:18
标识
DOI:10.1148/radiol.221510
摘要

Background Quantitative US (QUS) using radiofrequency data analysis has been recently introduced for noninvasive evaluation of hepatic steatosis. Deep learning algorithms may improve the diagnostic performance of QUS for hepatic steatosis. Purpose To evaluate a two-dimensional (2D) convolutional neural network (CNN) algorithm using QUS parametric maps and B-mode images for diagnosis of hepatic steatosis, with the MRI-derived proton density fat fraction (PDFF) as the reference standard, in patients with nonalcoholic fatty liver disease (NAFLD). Materials and Methods: Consecutive adult participants with suspected NAFLD were prospectively enrolled at a single academic medical center from July 2020 to June 2021. Using radiofrequency data analysis, two QUS parameters (tissue attenuation imaging [TAI] and tissue scatter-distribution imaging [TSI]) were measured. On B-mode images, hepatic steatosis was graded using visual scoring (none, mild, moderate, or severe). Using B-mode images and two QUS parametric maps (TAI and TSI) as input data, the algorithm estimated the US fat fraction (USFF) as a percentage. The correlation between the USFF and MRI PDFF was evaluated using the Pearson correlation coefficient. The diagnostic performance of the USFF for hepatic steatosis (MRI PDFF ≥5%) was evaluated using receiver operating characteristic curve analysis and compared with that of TAI, TSI, and visual scoring. Results Overall, 173 participants (mean age, 51 years ± 14 [SD]; 96 men) were included, with 126 (73%) having hepatic steatosis (MRI PDFF ≥5%). USFF correlated strongly with MRI PDFF (Pearson r = 0.86, 95% CI: 0.82, 0.90; P < .001). For diagnosing hepatic steatosis (MRI PDFF ≥5%), the USFF yielded an area under the receiver operating characteristic curve of 0.97 (95% CI: 0.93, 0.99), higher than those of TAI, TSI, and visual scoring (P = .015, .006, and < .001, respectively), with a sensitivity of 90% (95% CI: 84, 95 [114 of 126]) and a specificity of 91% (95% CI: 80, 98 [43 of 47]) at a cutoff value of 5.7%. Conclusion A deep learning algorithm using quantitative US parametric maps and B-mode images accurately estimated the hepatic fat fraction and diagnosed hepatic steatosis in participants with nonalcoholic fatty liver disease. ClinicalTrials.gov registration nos. NCT04462562, NCT04180631 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Sidhu and Fang in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桌球有点蔡先生完成签到 ,获得积分10
2秒前
科研通AI5应助害羞万天采纳,获得10
3秒前
小橘子完成签到,获得积分10
4秒前
留胡子的霖完成签到,获得积分10
5秒前
HUangg发布了新的文献求助10
5秒前
儒雅凡桃发布了新的文献求助10
7秒前
感动清炎完成签到,获得积分10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
14秒前
科研通AI5应助tjxx采纳,获得10
14秒前
典雅白柏完成签到,获得积分20
15秒前
15秒前
包容丹云完成签到,获得积分10
18秒前
大模型应助12采纳,获得10
19秒前
赵懂发布了新的文献求助10
19秒前
肥羊七号完成签到 ,获得积分10
19秒前
19秒前
一只有机狗完成签到 ,获得积分10
21秒前
思源应助陈龙采纳,获得10
21秒前
m0405完成签到,获得积分10
23秒前
芷兰丁香发布了新的文献求助10
25秒前
是谁还没睡完成签到 ,获得积分10
27秒前
28秒前
Xu完成签到,获得积分20
31秒前
尊敬的雨竹完成签到,获得积分10
31秒前
完美世界应助学勾巴采纳,获得10
34秒前
酷酷绣完成签到,获得积分20
34秒前
陈龙发布了新的文献求助10
34秒前
34秒前
yu完成签到,获得积分10
35秒前
风中夜天发布了新的文献求助10
36秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843