Heterogeneous Domain Adaptation: An Unsupervised Approach

域适应 人工智能 领域(数学分析) 适应(眼睛) 模式识别(心理学) 机器学习 无监督学习 人工神经网络
作者
Feng Liu,Guangquan Zhang,Jie Lu
出处
期刊:IEEE Transactions on Neural Networks [Institute of Electrical and Electronics Engineers]
卷期号:31 (12): 5588-5602 被引量:44
标识
DOI:10.1109/tnnls.2020.2973293
摘要

Domain adaptation leverages the knowledge in one domain—the source domain—to improve learning efficiency in another domain—the target domain. Existing heterogeneous domain adaptation research is relatively well-progressed but only in situations where the target domain contains at least a few labeled instances. In contrast, heterogeneous domain adaptation with an unlabeled target domain has not been well-studied. To contribute to the research in this emerging field, this article presents: 1) an unsupervised knowledge transfer theorem that guarantees the correctness of transferring knowledge and 2) a principal angle-based metric to measure the distance between two pairs of domains: one pair comprises the original source and target domains and the other pair comprises two homogeneous representations of two domains. The theorem and the metric have been implemented in an innovative transfer model, called a Grassmann–linear monotonic maps–geodesic flow kernel (GLG), which is specifically designed for heterogeneous unsupervised domain adaptation (HeUDA). The linear monotonic maps (LMMs) meet the conditions of the theorem and are used to construct homogeneous representations of the heterogeneous domains. The metric shows the extent to which the homogeneous representations have preserved the information in the original source and target domains. By minimizing the proposed metric, the GLG model learns the homogeneous representations of heterogeneous domains and transfers knowledge through these learned representations via a geodesic flow kernel (GFK). To evaluate the model, five public data sets were reorganized into ten HeUDA tasks across three applications: cancer detection, the credit assessment, and text classification. The experiments demonstrate that the proposed model delivers superior performance over the existing baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的怡发布了新的文献求助30
刚刚
打打应助lx840518采纳,获得10
1秒前
2秒前
2秒前
2秒前
张叶卓完成签到,获得积分20
2秒前
蕾蕾完成签到 ,获得积分10
3秒前
dididodo发布了新的文献求助10
3秒前
充电宝应助旭龙采纳,获得10
3秒前
Bonjour发布了新的文献求助30
4秒前
4秒前
武映易完成签到 ,获得积分10
4秒前
山牙子完成签到 ,获得积分10
5秒前
代泡泡发布了新的文献求助10
6秒前
6秒前
7秒前
小二郎应助张叶卓采纳,获得10
8秒前
washy完成签到 ,获得积分10
9秒前
张章发布了新的文献求助10
10秒前
深情安青应助xdwyd采纳,获得10
11秒前
12秒前
黄柠檬发布了新的文献求助10
12秒前
ttgx发布了新的文献求助10
13秒前
代泡泡完成签到,获得积分10
14秒前
JamesPei应助豆皮采纳,获得10
14秒前
zzzzzz完成签到 ,获得积分10
14秒前
14秒前
NCS完成签到,获得积分10
15秒前
16秒前
17秒前
18秒前
科研通AI5应助师德采纳,获得10
19秒前
ASZXDW发布了新的文献求助10
19秒前
云浮山海发布了新的文献求助10
19秒前
TigerOvO应助兔兔不吐泡泡采纳,获得30
20秒前
21秒前
dididodo完成签到,获得积分10
22秒前
NexusExplorer应助张章采纳,获得10
23秒前
爆米花应助doocan采纳,获得10
23秒前
Self发布了新的文献求助10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795186
求助须知:如何正确求助?哪些是违规求助? 3340148
关于积分的说明 10298847
捐赠科研通 3056613
什么是DOI,文献DOI怎么找? 1677114
邀请新用户注册赠送积分活动 805194
科研通“疑难数据库(出版商)”最低求助积分说明 762391