A Novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 Cathode for Na-ion Batteries

材料科学 电解质 阴极 氧化物 插层(化学) 电化学 相(物质) 扩散 离子 化学工程 分析化学(期刊) 电极 无机化学 物理化学 热力学 冶金 有机化学 工程类 化学 色谱法 物理
作者
Feixiang Ding,Chenglong Zhao,Dong Zhou,Qingshi Meng,Dongdong Xiao,Qiangqiang Zhang,Yaoshen Niu,Yuqi Li,Xiaohui Rong,Yaxiang Lu,Liquan Chen,Yong‐Sheng Hu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:30: 420-430 被引量:201
标识
DOI:10.1016/j.ensm.2020.05.013
摘要

O3-type layered oxide materials are being considered as one of the most promising cathodes for Na-ion batteries owing to their higher capacity, however, they usually suffer from structural damage at the highly desodiated state. To achieve the stable/high-capacity O3-type Na-ion cathodes, a series of Ni-rich O3–Na[NixFeyMn1-x-y]O2 (x ​= ​0.6, 0.7 and 0.8) oxide cathodes were successfully prepared and the phase transitions at high voltage were systematically investigated. Combined with the electrochemical measurements and structural characterizations, the structural transitions from O3 to O′3, P3, O3″ phases during the Na+ (de)intercalation process were demonstrated in the voltage range of 2.0–4.2 ​V. Moreover, several reasons for the high-voltage capacity decay are revealed: 1) the thermodynamic instability of high-voltage phase due to less Na+ in the crystal structure; 2) large volume change during the high-voltage phase evolution with inferior Na+ diffusion kinetics; 3) formation of microcracks and cathode-electrolyte interphase on the surface of cathode particles. To address the above issues, a reasonable upper cut-off voltage of 4.0 ​V was set to prevent the formation of O3″ phase and reduce electrolyte decomposition, which leads to a high reversible capacity of ~152 mAh g−1 (~467 ​Wh kg−1) with a superior capacity retention of ~84% after 200 cycles at 0.5C, showing great Na storage performance. This work provides insights on the relationship of the structure-property for the further development of high-performance Ni-rich O3-type Na-ion cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱打乒乓球完成签到,获得积分10
刚刚
Liao发布了新的文献求助10
刚刚
顾矜应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得30
1秒前
hello完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助dery采纳,获得10
2秒前
star应助科研通管家采纳,获得100
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
Ei应助科研通管家采纳,获得10
2秒前
on完成签到,获得积分10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
善学以致用应助yfy_fairy采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
汉堡包应助Jello采纳,获得10
2秒前
2秒前
2秒前
情怀应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
mafukairi应助科研通管家采纳,获得10
3秒前
Ei应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
沈格完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
虚心醉蝶完成签到 ,获得积分10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295127
求助须知:如何正确求助?哪些是违规求助? 4444682
关于积分的说明 13834514
捐赠科研通 4328977
什么是DOI,文献DOI怎么找? 2376485
邀请新用户注册赠送积分活动 1371748
关于科研通互助平台的介绍 1336961