A CT-based deep learning model for predicting the nuclear grade of clear cell renal cell carcinoma

医学 肾透明细胞癌 肾细胞癌 放射科 病理 核医学
作者
Fan Lin,Changyi Ma,Jinpeng Xu,Lei Yi,Qing Li,Yong Lan,Ming Sun,Wansheng Long,Enming Cui
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:129: 109079-109079 被引量:36
标识
DOI:10.1016/j.ejrad.2020.109079
摘要

Abstract

Purpose

To investigate the effects of different methodologies on the performance of deep learning (DL) model for differentiating high- from low-grade clear cell renal cell carcinoma (ccRCC).

Method

Patients with pathologically proven ccRCC diagnosed between October 2009 and March 2019 were assigned to training or internal test dataset, and external test dataset was acquired from The Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) database. The effects of different methodologies on the performance of DL-model, including image cropping (IC), setting the attention level, selecting model complexity (MC), and applying transfer learning (TL), were compared using repeated measures analysis of variance (ANOVA) and receiver operating characteristic (ROC) curve analysis. The performance of DL-model was evaluated through accuracy and ROC analyses with internal and external tests.

Results

In this retrospective study, patients (n = 390) from one hospital were randomly assigned to training (n = 370) or internal test dataset (n = 20), and the other 20 patients from TCGA-KIRC database were assigned to external test dataset. IC, the attention level, MC, and TL had major effects on the performance of the DL-model. The DL-model based on the cropping of an image less than three times the tumor diameter, without attention, a simple model and the application of TL achieved the best performance in internal (ACC = 73.7 ± 11.6%, AUC = 0.82 ± 0.11) and external (ACC = 77.9 ± 6.2%, AUC = 0.81 ± 0.04) tests.

Conclusions

CT-based DL model can be conveniently applied for grading ccRCC with simple IC in routine clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lcl发布了新的文献求助10
1秒前
1秒前
若兰发布了新的文献求助10
1秒前
2秒前
小二郎应助徐春悦采纳,获得10
2秒前
孙燕应助王立为采纳,获得10
2秒前
潇洒的诗桃应助王立为采纳,获得10
2秒前
4秒前
上官若男应助yue957采纳,获得10
4秒前
琪琪完成签到,获得积分10
4秒前
三三发布了新的文献求助10
4秒前
常泽洋122发布了新的文献求助10
6秒前
隐形曼青应助香蕉乐萱采纳,获得10
6秒前
副掌门发布了新的文献求助10
7秒前
yaoyaoyao完成签到 ,获得积分10
7秒前
8秒前
热心丹南完成签到,获得积分10
9秒前
liam发布了新的文献求助10
9秒前
galen完成签到,获得积分10
10秒前
科研通AI5应助清爽花卷采纳,获得10
10秒前
13秒前
科研通AI5应助zhangweiji采纳,获得10
13秒前
热心丹南发布了新的文献求助10
13秒前
cwj813520发布了新的文献求助10
14秒前
科研通AI5应助酸奶采纳,获得10
16秒前
芒果完成签到,获得积分10
16秒前
17秒前
香蕉觅云应助热心丹南采纳,获得10
18秒前
18秒前
火星上仰完成签到,获得积分10
20秒前
今后应助罗山柳采纳,获得10
22秒前
22秒前
Valentina发布了新的文献求助10
23秒前
23秒前
yue957完成签到,获得积分10
23秒前
galen发布了新的文献求助10
25秒前
26秒前
徐春悦发布了新的文献求助10
26秒前
27秒前
叶子发布了新的文献求助10
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842655
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536643
捐赠科研通 3105227
什么是DOI,文献DOI怎么找? 1710094
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110