Mean Difference, Standardized Mean Difference (SMD), and Their Use in Meta-Analysis

严格标准化平均差 合并方差 荟萃分析 统计 数学 置信区间 显著性差异 统计的 加权 标准差 医学 平均差 内科学 放射科
作者
Chittaranjan Andrade
出处
期刊:The Journal of Clinical Psychiatry [Physicians Postgraduate Press, Inc.]
卷期号:81 (5) 被引量:551
标识
DOI:10.4088/jcp.20f13681
摘要

In randomized controlled trials (RCTs), endpoint scores, or change scores representing the difference between endpoint and baseline, are values of interest. These values are compared between experimental and control groups, yielding a mean difference between the experimental and control groups for each outcome that is compared. When the mean difference values for a specified outcome, obtained from different RCTs, are all in the same unit (such as when they were all obtained using the same rating instrument), they can be pooled in meta-analysis to yield a summary estimate that is also known as a mean difference (MD). Because pooling of the mean difference from individual RCTs is done after weighting the values for precision, this pooled MD is also known as the weighted mean difference (WMD). Sometimes, different studies use different rating instruments to measure the same outcome; that is, the units of measurement for the outcome of interest are different across studies. In such cases, the mean differences from the different RCTs cannot be pooled. However, these mean differences can be divided by their respective standard deviations (SDs) to yield a statistic known as the standardized mean difference (SMD). The SD that is used as the divisor is usually either the pooled SD or the SD of the control group; in the former instance, the SMD is known as Cohen's d, and in the latter instance, as Glass' delta. SMDs of 0.2, 0.5, and 0.8 are considered small, medium, and large, respectively. SMDs can be pooled in meta-analysis because the unit is uniform across studies. This article presents and explains the different terms and concepts with the help of simple examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hua完成签到,获得积分10
1秒前
1秒前
招财小茗完成签到,获得积分10
2秒前
KristenStewart完成签到,获得积分10
2秒前
开心如冬发布了新的文献求助10
2秒前
zs完成签到 ,获得积分10
3秒前
Gstring完成签到,获得积分10
3秒前
外向雁梅完成签到,获得积分10
3秒前
3秒前
亿眼万年发布了新的文献求助10
4秒前
wuyang完成签到,获得积分20
4秒前
山有扶苏完成签到,获得积分10
4秒前
longlong发布了新的文献求助10
4秒前
活力的巧凡完成签到 ,获得积分10
4秒前
想喝冰美完成签到,获得积分10
4秒前
领导范儿应助魏凡之采纳,获得10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
康康完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
6秒前
xxx发布了新的文献求助10
6秒前
Lynette发布了新的文献求助10
6秒前
apple619完成签到,获得积分10
7秒前
热心市民王先生完成签到,获得积分10
7秒前
San_Fu完成签到,获得积分10
7秒前
拼搏君浩完成签到,获得积分20
7秒前
谁静谁性关注了科研通微信公众号
8秒前
光亮亦竹完成签到 ,获得积分10
8秒前
伞下铭发布了新的文献求助10
8秒前
8秒前
纪梵希完成签到,获得积分10
8秒前
斯文败类应助gxz采纳,获得10
8秒前
慕青应助开心如冬采纳,获得10
8秒前
上官若男应助LONGzhi采纳,获得10
9秒前
YiwenLu完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665774
求助须知:如何正确求助?哪些是违规求助? 4878319
关于积分的说明 15115461
捐赠科研通 4825051
什么是DOI,文献DOI怎么找? 2583021
邀请新用户注册赠送积分活动 1537048
关于科研通互助平台的介绍 1495446