假肢
有限元法
材料科学
结构工程
生物力学
合金
工程类
口腔正畸科
机械工程
计算机科学
复合材料
医学
生理学
人工智能
作者
Miguel Villagómez Galindo
摘要
This paper shows a biomechanical analysis of a hip prosthesis under conditions of loads associated with daily activities. For which it compared three metallic materials for the manufacture of a customized prosthesis from medical images, it was used cloud platforms with computer-aided design and finite element analysis. Two models of prosthesis one hollow and the other one solid using parametric spline curves were designed and analyzed. The biomechanical analysis required a mesh size consisting of 2’537,684 tetrahedral elements and 471,335 nodes to study seven cases of postures for a person weighing 75 kg. These cases were analyzed based on 316L stainless steel, Ti-6AL-4V alloy, and another L-605 alloy. It was observed that with activities such as jogging, climbing and descending stairs, materials 316L, and L-605 present the risk of plastic deformation and even fracture. The results show that the most suitable material for the manufacture of this type of prosthesis is the Ti-6Al-4V, which allows us to make both solid and hollow models. Assuming this last material is saved and improves the prosthesis lightness.
科研通智能强力驱动
Strongly Powered by AbleSci AI