Exploring traditional acupuncture point selection patterns for pain control: data mining of randomised controlled clinical trials

针灸科 医学 随机对照试验 穴位 物理疗法 梅德林 临床试验 电针 物理医学与康复 替代医学 外科 病理 政治学 法学
作者
Ye-chae Hwang,In‐Seon Lee,Yeonhee Ryu,Myeong Soo Lee,Younbyoung Chae
出处
期刊:Acupuncture in Medicine [SAGE Publishing]
卷期号:: 096452842092617-096452842092617 被引量:22
标识
DOI:10.1177/0964528420926173
摘要

Background The underlying principles of traditional acupuncture point selection for pain control are complex. Analysis of acupuncture treatments from clinical studies may provide us with a potential rule when selecting traditional acupuncture points (hereafter abbreviated as “points”) in treatment protocols for pain control. The aim of this study was to investigate which points were most commonly used to treat pain in randomised controlled clinical trials (RCTs). Methods We searched acupuncture treatment regimens in RCTs included in the Cochrane Database of Systematic Reviews for pain management. We analysed information on point selection (more than 10 RCTs included) from seven eligible systematic reviews on pain control. The frequency of the points used was calculated and visualised using a human body template. Results The points most commonly used across diseases were SP6, ST36, LI4 and LR3. However, the most frequently used points varied across individual conditions. For example, the most frequently used points to treat migraine were GB20, LR3, GV20, Taiyang, LI4 and TE5, while the most frequently used points to manage dysmenorrhoea were SP6, CV4, SP8, LR3 and BL32. Both regional and distal points were used for pain management with acupuncture. Conclusions Our findings suggest that local and segmental/extra-segmental neuromodulation appear to be the most common phenomena for pain control in acupuncture research. Analysis of information on point selection using a data-driven approach may unveil the hidden patterns of traditional acupuncture point utilisation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
善学以致用应助小a采纳,获得30
刚刚
jnn完成签到,获得积分20
1秒前
Jasper应助派大星采纳,获得10
2秒前
zhanlang发布了新的文献求助10
2秒前
liyah完成签到,获得积分10
3秒前
Qian完成签到,获得积分10
3秒前
4秒前
7秒前
shine完成签到 ,获得积分10
8秒前
qq发布了新的文献求助10
9秒前
9秒前
Dskelf完成签到,获得积分10
10秒前
10秒前
弄香完成签到,获得积分10
10秒前
辣椒油油发布了新的文献求助10
12秒前
完美世界应助怡然的一曲采纳,获得10
12秒前
科研通AI2S应助Dandelion采纳,获得10
12秒前
贱小贱完成签到,获得积分10
13秒前
卡卡西应助科研通管家采纳,获得30
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
科研狂魔应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
夏来应助科研通管家采纳,获得10
14秒前
CodeCraft应助漂亮钢铁侠采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得50
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
自信凤凰应助科研通管家采纳,获得10
14秒前
15秒前
15秒前
不安毛豆发布了新的文献求助10
16秒前
yh发布了新的文献求助10
16秒前
科研通AI5应助xxxqqq采纳,获得10
16秒前
bkagyin应助xxxqqq采纳,获得10
16秒前
xx发布了新的文献求助10
17秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826119
求助须知:如何正确求助?哪些是违规求助? 3368482
关于积分的说明 10450876
捐赠科研通 3087956
什么是DOI,文献DOI怎么找? 1698857
邀请新用户注册赠送积分活动 817164
科研通“疑难数据库(出版商)”最低求助积分说明 770065