Prediction of Highway Tunnel Pavement Performance Based on Digital Twin and Multiple Time Series Stacking

计算机科学 支持向量机 预测建模 性能预测 数据挖掘 超参数优化 稳健性(进化) 超参数 随机森林 人工神经网络 机器学习 时间序列 人工智能 模拟 基因 生物化学 化学
作者
Gang Yu,Shuang Zhang,Min Hu,Y. Ken Wang
出处
期刊:Advances in Civil Engineering [Hindawi Limited]
卷期号:2020 (1) 被引量:73
标识
DOI:10.1155/2020/8824135
摘要

The existing pavement performance prediction methods are limited to single‐factor predictions, which often face the challenges of high cost, low efficiency, and poor accuracy. It is difficult to simultaneously solve the temporal, spatial, and exogenous dependencies between pavement performance data and maintenance, the service life of highways, the environment, and other factors. Digital twin technology based on the building information modeling (BIM) model, combined with machine learning, puts forward a new perspective and method for the accurate and timely prediction of pavement performance. In this paper, we propose a highway tunnel pavement performance prediction approach based on a digital twin and multiple time series stacking (MTSS). This paper (1) establishes an MTSS prediction model with heterogeneous stacking of eXtreme gradient boosting (XGBoost), the artificial neural network (ANN), random forest (RF), ridge regression, and support vector regression (SVR) component learners after exploratory data analysis (EDA); (2) proposes a method based on multiple time series feature extraction to accurately predict the pavement performance change trend, using the highway segment as the minimum computing unit and considering multiple factors; (3) uses grid search with the k ‐fold cross validation method to optimize hyperparameters to ensure the robustness, stability, and generalization ability of the prediction model; and (4) constructs a digital twin for pavement performance prediction to realize the real‐time dynamic evolution of prediction. The method proposed in this study is applied in the life cycle management of the Dalian highway‐crossing tunnel in Shanghai, China. A dataset covering 2010–2019 is collected for real‐time prediction of the pavement performance. The prediction accuracy evaluation shows that the mean absolute error (MAE) is 0.1314, the root mean squared error (RMSE) is 0.0386, the mean absolute percentage error (MAPE) is 5.10%, and the accuracy is 94.90%. Its overall performance is better than a single model. The results verify that the prediction method based on digital twin and MTSS is feasible and effective in the highway tunnel pavement performance prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdf发布了新的文献求助10
1秒前
张琳完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
鲤鱼书白发布了新的文献求助10
8秒前
求源完成签到,获得积分10
9秒前
9秒前
充电宝应助布曲采纳,获得10
10秒前
FnDs完成签到,获得积分10
11秒前
雨滴音乐发布了新的文献求助10
11秒前
wy.he完成签到,获得积分0
11秒前
11秒前
T拐拐发布了新的文献求助10
13秒前
14秒前
14秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
研友_LweedZ发布了新的文献求助10
18秒前
rover完成签到 ,获得积分10
19秒前
19秒前
热情蛋挞发布了新的文献求助30
20秒前
21秒前
小丹小丹完成签到 ,获得积分10
21秒前
彬彬发布了新的文献求助10
21秒前
科研通AI6应助跳跃的千柳采纳,获得10
22秒前
22秒前
李燊发布了新的文献求助10
23秒前
忘仔发布了新的文献求助30
23秒前
23秒前
Carlo完成签到,获得积分10
24秒前
Aimee发布了新的文献求助10
25秒前
25秒前
布曲发布了新的文献求助10
27秒前
NexusExplorer应助欣慰的盼芙采纳,获得10
27秒前
落寞的火车完成签到,获得积分10
29秒前
WangQ完成签到,获得积分10
30秒前
runpeng发布了新的文献求助10
31秒前
浮浮世世发布了新的文献求助50
31秒前
32秒前
华仔应助爱学习采纳,获得10
32秒前
yejian发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484143
求助须知:如何正确求助?哪些是违规求助? 4584418
关于积分的说明 14397830
捐赠科研通 4514421
什么是DOI,文献DOI怎么找? 2473992
邀请新用户注册赠送积分活动 1459944
关于科研通互助平台的介绍 1433349