已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Extended Theory of Planned Behavior for the Modelling of Chinese Secondary School Students’ Intention to Learn Artificial Intelligence

心理学 操作化 验证性因素分析 结构方程建模 构造(python库) 计划行为理论 控制(管理) 社会心理学 数学教育 结构效度 应用心理学 发展心理学 心理测量学 人工智能 计算机科学 认识论 机器学习 哲学 程序设计语言
作者
Ching Sing Chai,Xingwei Wang,Chang Xu
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:8 (11): 2089-2089 被引量:144
标识
DOI:10.3390/math8112089
摘要

Artificial Intelligence (AI) is currently changing how people live and work. Its importance has prompted educators to begin teaching AI in secondary schools. This study examined how Chinese secondary school students’ intention to learn AI were associated with eight other relevant psychological factors. Five hundred and forty-five secondary school students who have completed at least one cycle of AI course were recruited to participate in this study. Based on the theory of planned behavior, the students’ AI literacy, subjective norms, and anxiety were identified as background factors. These background factors were hypothesized to influence the students’ attitudes towards AI, their perceived behavioral control, and their intention to learn AI. To provide more nuanced understanding, the students’ attitude towards AI was further delineated as constituted by their perception of the usefulness of AI, the potential of AI technology to promote social good, and their attitude towards using AI technology. Similarly, the perceived behavioral control was operationalized as students’ confidence towards learning AI knowledge and optimistic outlook of an AI infused world. Relationships between the factors were theoretically illustrated as a model that depicts how students’ intention to learn AI was constituted. Two research questions were then formulated. Confirmatory factor analysis was employed to validate that multi-factor survey, followed by structural equational modelling to ascertain the significant associations between the factors. The confirmatory factor analysis supports the construct validity of the questionnaire. Twenty-five out of the thirty-three hypotheses were supported through structural equation modelling. The model helps researchers and educators to understand the factors that shape students’ intention to learn AI. These factors should be considered for the design of AI curriculum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuo0976完成签到,获得积分10
刚刚
Vaibhav完成签到,获得积分10
1秒前
结实的小土豆完成签到 ,获得积分10
1秒前
清爽的机器猫完成签到 ,获得积分10
1秒前
kaiyi完成签到,获得积分10
1秒前
akun完成签到,获得积分10
2秒前
香锅不要辣完成签到 ,获得积分10
2秒前
程负暄完成签到 ,获得积分10
3秒前
LZL完成签到 ,获得积分10
4秒前
方的圆完成签到 ,获得积分10
4秒前
噼里啪啦完成签到 ,获得积分10
4秒前
Jiang完成签到 ,获得积分10
5秒前
Eileen完成签到 ,获得积分10
5秒前
vkk完成签到 ,获得积分10
5秒前
zhaosiqi完成签到 ,获得积分10
5秒前
6秒前
峰feng完成签到 ,获得积分10
6秒前
7秒前
EED完成签到 ,获得积分10
7秒前
谨慎秋珊完成签到 ,获得积分10
7秒前
馆长应助Leslie采纳,获得60
7秒前
安静夏天完成签到,获得积分20
8秒前
Tsin778完成签到 ,获得积分10
9秒前
迷路的台灯完成签到 ,获得积分10
9秒前
刀笔吏完成签到,获得积分0
10秒前
ttkx发布了新的文献求助10
11秒前
落叶知秋发布了新的文献求助10
12秒前
月亮啊完成签到 ,获得积分10
14秒前
大模型应助安静夏天采纳,获得10
14秒前
wang完成签到 ,获得积分10
15秒前
优雅夕阳完成签到 ,获得积分10
15秒前
hjc完成签到,获得积分10
15秒前
鲤鱼绿蕊完成签到,获得积分10
15秒前
plant完成签到 ,获得积分10
16秒前
科目三应助ysan采纳,获得10
17秒前
1335804518完成签到 ,获得积分10
18秒前
Rjy完成签到 ,获得积分10
19秒前
落叶知秋完成签到,获得积分10
20秒前
YABC完成签到,获得积分10
20秒前
在水一方完成签到,获得积分0
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4681027
求助须知:如何正确求助?哪些是违规求助? 4056979
关于积分的说明 12544306
捐赠科研通 3751999
什么是DOI,文献DOI怎么找? 2072131
邀请新用户注册赠送积分活动 1101233
科研通“疑难数据库(出版商)”最低求助积分说明 980573