A Statistical Method for Estimating Activity Uncertainty Parameters to Improve Project Forecasting

计算机科学 熵(时间箭头) 校准 地铁列车时刻表 经验分布函数 概率分布 启发式 数据挖掘 计量经济学 统计 人工智能 数学 物理 量子力学 操作系统
作者
Mario Vanhoucke,Jordy Batselier
出处
期刊:Entropy [Multidisciplinary Digital Publishing Institute]
卷期号:21 (10): 952-952 被引量:10
标识
DOI:10.3390/e21100952
摘要

Just like any physical system, projects have entropy that must be managed by spending energy. The entropy is the project’s tendency to move to a state of disorder (schedule delays, cost overruns), and the energy process is an inherent part of any project management methodology. In order to manage the inherent uncertainty of these projects, accurate estimates (for durations, costs, resources, …) are crucial to make informed decisions. Without these estimates, managers have to fall back to their own intuition and experience, which are undoubtedly crucial for making decisions, but are are often subject to biases and hard to quantify. This paper builds further on two published calibration methods that aim to extract data from real projects and calibrate them to better estimate the parameters for the probability distributions of activity durations. Both methods rely on the lognormal distribution model to estimate uncertainty in activity durations and perform a sequence of statistical hypothesis tests that take the possible presence of two human biases into account. Based on these two existing methods, a new so-called statistical partitioning heuristic is presented that integrates the best elements of the two methods to further improve the accuracy of estimating the distribution of activity duration uncertainty. A computational experiment has been carried out on an empirical database of 83 empirical projects. The experiment shows that the new statistical partitioning method performs at least as good as, and often better than, the two existing calibration methods. The improvement will allow a better quantification of the activity duration uncertainty, which will eventually lead to a better prediction of the project schedule and more realistic expectations about the project outcomes. Consequently, the project manager will be able to better cope with the inherent uncertainty (entropy) of projects with a minimum managerial effort (energy).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuhanZ完成签到,获得积分10
1秒前
夏夜微凉完成签到,获得积分10
1秒前
羽言完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
ccm应助挖菜采纳,获得10
3秒前
唐泽雪穗应助挖菜采纳,获得10
3秒前
星辰大海应助挖菜采纳,获得10
3秒前
共享精神应助挖菜采纳,获得20
3秒前
Hello应助挖菜采纳,获得20
3秒前
科研通AI6应助挖菜采纳,获得10
3秒前
3秒前
小二郎应助挖菜采纳,获得20
3秒前
GingerF应助挖菜采纳,获得50
3秒前
Akim应助挖菜采纳,获得10
3秒前
科研通AI5应助挖菜采纳,获得10
3秒前
飘逸的山柏完成签到 ,获得积分10
3秒前
4秒前
like完成签到 ,获得积分10
4秒前
藤原拓海完成签到,获得积分10
4秒前
qqq完成签到 ,获得积分10
4秒前
Akim应助笨笨的曼文采纳,获得10
4秒前
4秒前
鲁滨逊完成签到 ,获得积分10
5秒前
qqq完成签到 ,获得积分10
5秒前
sunny850完成签到,获得积分10
5秒前
Mess完成签到,获得积分10
5秒前
SciGPT应助南风采纳,获得10
5秒前
7秒前
YANG完成签到 ,获得积分10
8秒前
8秒前
小薛完成签到,获得积分10
8秒前
NexusExplorer应助yuhanZ采纳,获得10
8秒前
728发布了新的文献求助10
9秒前
9秒前
9秒前
高挑的听南完成签到,获得积分10
10秒前
Syk_发布了新的文献求助10
11秒前
王MY发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5045453
求助须知:如何正确求助?哪些是违规求助? 4274717
关于积分的说明 13324972
捐赠科研通 4088617
什么是DOI,文献DOI怎么找? 2237123
邀请新用户注册赠送积分活动 1244356
关于科研通互助平台的介绍 1172506