Prediction models of soil heavy metal(loid)s concentration for agricultural land in Dongli: A comparison of regression and random forest

环境科学 土壤水分 土壤科学
作者
Huanzhi Wang,Qimanguli Yilihamu,Mengnan Yuan,Hongtao Bai,He Xu,Jing Wu
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:119: 106801-106801 被引量:128
标识
DOI:10.1016/j.ecolind.2020.106801
摘要

The soil environment is being continually contaminated with heavy metals from emissions that are introduced from both the atmosphere and water under the condition of rapid urbanization and industrialization, which cause land use regression (LUR) models could not easily capture complex relationship between soil heavy metal and potential indicator. Random forest is a non-parametric statistical method that can manage non-linear relationships. This study aims to explore the application of random forest (RF) models in predicting the soil concentration and spatial distribution of six heavy metal(loid)s (Pb, Cd, Cr, As, Hg and Zn) comparing with land use regression (LUR) models. Finally, R2 values for the RF models were approximately 0.90 and presented a larger cross-validation R2 and lower root mean square error (RMSE) than LUR models. The comparison between the RF and LUR models demonstrates that the RF model performed better and RF can accurately predict the concentration and spatial distribution of heavy metal(loid)s in soils. Moreover, in the study area, human activities and transportation are the main sources of soil heavy metals Pb, sewage irrigation is the main source of Cd, Cr and Zn, and atmospheric deposition from thermal power stations is an important source of soil heavy metals Hg. Parent materials is the most likely source of As. Given the above, application of random forest in soil heavy metal(loid)s may assist soil environmental management departments to focus on controlling the diffusion of heavy metal(loid)s pollution sources in a practical way, and providing targets for pollution control and prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
戴泽楷发布了新的文献求助10
刚刚
Fascinate发布了新的文献求助10
1秒前
leilei完成签到,获得积分10
2秒前
ltttyy发布了新的文献求助10
2秒前
yangqi发布了新的文献求助200
2秒前
笑笑完成签到,获得积分10
3秒前
gxqqqqqqq发布了新的文献求助10
3秒前
3秒前
Nuyoah发布了新的文献求助10
3秒前
qq完成签到 ,获得积分10
3秒前
科目三应助LAH1018采纳,获得10
3秒前
淡定身影完成签到,获得积分10
4秒前
Ji发布了新的文献求助10
4秒前
Jenny发布了新的文献求助10
4秒前
Zx_1993应助MuMu采纳,获得20
5秒前
Owen应助风清扬采纳,获得10
5秒前
5秒前
TwentyNine发布了新的文献求助10
5秒前
Whan应助舒适虔采纳,获得10
6秒前
6秒前
6秒前
光头二师兄完成签到,获得积分10
6秒前
Albert完成签到,获得积分10
7秒前
7秒前
高挑的小蕊完成签到,获得积分10
7秒前
8秒前
科研通AI5应助xyf采纳,获得10
8秒前
流涟新完成签到,获得积分10
8秒前
9秒前
9秒前
爆米花应助浅呀呀呀采纳,获得10
10秒前
10秒前
10秒前
wddddd发布了新的文献求助10
10秒前
路先生发布了新的文献求助100
10秒前
图图完成签到,获得积分10
11秒前
tsntn完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Vertebrate Palaeontology, 5th Edition 480
Aircraft Engine Design, Third Edition 308
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155267
求助须知:如何正确求助?哪些是违规求助? 4350907
关于积分的说明 13546900
捐赠科研通 4193754
什么是DOI,文献DOI怎么找? 2300082
邀请新用户注册赠送积分活动 1300029
关于科研通互助平台的介绍 1245062