Prediction models of soil heavy metal(loid)s concentration for agricultural land in Dongli: A comparison of regression and random forest

环境科学 土壤水分 土壤科学
作者
Huanzhi Wang,Qimanguli Yilihamu,Mengnan Yuan,Hongtao Bai,He Xu,Jing Wu
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:119: 106801-106801 被引量:104
标识
DOI:10.1016/j.ecolind.2020.106801
摘要

The soil environment is being continually contaminated with heavy metals from emissions that are introduced from both the atmosphere and water under the condition of rapid urbanization and industrialization, which cause land use regression (LUR) models could not easily capture complex relationship between soil heavy metal and potential indicator. Random forest is a non-parametric statistical method that can manage non-linear relationships. This study aims to explore the application of random forest (RF) models in predicting the soil concentration and spatial distribution of six heavy metal(loid)s (Pb, Cd, Cr, As, Hg and Zn) comparing with land use regression (LUR) models. Finally, R2 values for the RF models were approximately 0.90 and presented a larger cross-validation R2 and lower root mean square error (RMSE) than LUR models. The comparison between the RF and LUR models demonstrates that the RF model performed better and RF can accurately predict the concentration and spatial distribution of heavy metal(loid)s in soils. Moreover, in the study area, human activities and transportation are the main sources of soil heavy metals Pb, sewage irrigation is the main source of Cd, Cr and Zn, and atmospheric deposition from thermal power stations is an important source of soil heavy metals Hg. Parent materials is the most likely source of As. Given the above, application of random forest in soil heavy metal(loid)s may assist soil environmental management departments to focus on controlling the diffusion of heavy metal(loid)s pollution sources in a practical way, and providing targets for pollution control and prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术通zzz发布了新的文献求助10
1秒前
万能图书馆应助shanp采纳,获得10
2秒前
WT完成签到,获得积分20
2秒前
3秒前
沐橘发布了新的文献求助20
4秒前
天天快乐应助WT采纳,获得10
7秒前
我是老大应助橙花采纳,获得10
7秒前
雨琴发布了新的文献求助10
7秒前
Dean发布了新的文献求助10
7秒前
董羽佳完成签到,获得积分10
8秒前
8秒前
Sschi发布了新的文献求助10
9秒前
科研通AI5应助ComeOn采纳,获得10
9秒前
科研通AI5应助邓邓邓采纳,获得10
12秒前
玖Nine发布了新的文献求助10
12秒前
清爽难胜完成签到,获得积分10
12秒前
完美世界应助平常心采纳,获得30
13秒前
TIWOSS完成签到,获得积分10
14秒前
李爱国应助雪山飞虹采纳,获得10
16秒前
leslie完成签到,获得积分10
16秒前
舒适香露完成签到,获得积分10
16秒前
白杨木影子被拉长完成签到,获得积分10
16秒前
19秒前
河工大nature发表者完成签到 ,获得积分10
19秒前
19秒前
bc举报dd求助涉嫌违规
20秒前
jianjianjiang完成签到,获得积分10
21秒前
雨琴发布了新的文献求助10
23秒前
23秒前
Kyle发布了新的文献求助10
24秒前
muyassar完成签到,获得积分10
24秒前
脆条完成签到,获得积分10
25秒前
Casper完成签到,获得积分10
26秒前
26秒前
26秒前
jianjianjiang发布了新的文献求助10
26秒前
27秒前
27秒前
小羊123发布了新的文献求助10
28秒前
jeremy完成签到,获得积分10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814939
求助须知:如何正确求助?哪些是违规求助? 3358987
关于积分的说明 10399369
捐赠科研通 3076561
什么是DOI,文献DOI怎么找? 1689868
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608