Prediction models of soil heavy metal(loid)s concentration for agricultural land in Dongli: A comparison of regression and random forest

环境科学 土壤水分 土壤科学
作者
Huanzhi Wang,Qimanguli Yilihamu,Mengnan Yuan,Hongtao Bai,He Xu,Jing Wu
出处
期刊:Ecological Indicators [Elsevier]
卷期号:119: 106801-106801 被引量:128
标识
DOI:10.1016/j.ecolind.2020.106801
摘要

The soil environment is being continually contaminated with heavy metals from emissions that are introduced from both the atmosphere and water under the condition of rapid urbanization and industrialization, which cause land use regression (LUR) models could not easily capture complex relationship between soil heavy metal and potential indicator. Random forest is a non-parametric statistical method that can manage non-linear relationships. This study aims to explore the application of random forest (RF) models in predicting the soil concentration and spatial distribution of six heavy metal(loid)s (Pb, Cd, Cr, As, Hg and Zn) comparing with land use regression (LUR) models. Finally, R2 values for the RF models were approximately 0.90 and presented a larger cross-validation R2 and lower root mean square error (RMSE) than LUR models. The comparison between the RF and LUR models demonstrates that the RF model performed better and RF can accurately predict the concentration and spatial distribution of heavy metal(loid)s in soils. Moreover, in the study area, human activities and transportation are the main sources of soil heavy metals Pb, sewage irrigation is the main source of Cd, Cr and Zn, and atmospheric deposition from thermal power stations is an important source of soil heavy metals Hg. Parent materials is the most likely source of As. Given the above, application of random forest in soil heavy metal(loid)s may assist soil environmental management departments to focus on controlling the diffusion of heavy metal(loid)s pollution sources in a practical way, and providing targets for pollution control and prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽安萱完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
一二三lll完成签到,获得积分10
3秒前
5秒前
至幸完成签到,获得积分10
7秒前
小飞子发布了新的文献求助10
7秒前
马晓武发布了新的文献求助10
7秒前
8秒前
coolkid完成签到 ,获得积分0
10秒前
10秒前
可靠寒云完成签到,获得积分10
10秒前
Hello应助2003采纳,获得10
11秒前
money完成签到 ,获得积分10
12秒前
华仔应助zoes采纳,获得20
12秒前
jwliu发布了新的文献求助10
12秒前
充电宝应助调皮老头采纳,获得10
13秒前
慕青应助调皮老头采纳,获得10
13秒前
13秒前
doing发布了新的文献求助10
14秒前
yeah发布了新的文献求助10
15秒前
16秒前
美好忆之给美好忆之的求助进行了留言
16秒前
扶苏完成签到,获得积分10
17秒前
aze完成签到 ,获得积分10
17秒前
丘比特应助狂奔的蜗牛采纳,获得10
18秒前
晓驿完成签到,获得积分10
18秒前
20秒前
善学以致用应助十一采纳,获得10
20秒前
21秒前
21秒前
怡然银耳汤完成签到,获得积分10
22秒前
一念之间完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
肥大鸭发布了新的文献求助10
24秒前
zyb完成签到,获得积分10
24秒前
玫瑰少年完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571900
求助须知:如何正确求助?哪些是违规求助? 4657057
关于积分的说明 14719219
捐赠科研通 4597883
什么是DOI,文献DOI怎么找? 2523461
邀请新用户注册赠送积分活动 1494260
关于科研通互助平台的介绍 1464374